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Abstract—(1 late day)This homework involves de-
veloping a computer vision algorithm for boundary
detection and comparing different neural network
architectures for image classification. The first task
is to create a simplified version of the Probability
of Boundary (PB) algorithm, focusing on identifying
image boundaries by analyzing brightness, color, and
texture information. This version is expected to be
more effective than traditional edge detection methods
like Canny and Sobel, and its performance will be
assessed using the Berkeley Segmentation Data Set 500
(BSDS500). The second task involves implementing
various neural network architectures and evaluating
them using the CIFAR-10 dataset, which consists
of 60,000 color images in 10 classes. The evalua-
tion criteria will include the number of parameters,
training and test accuracies, providing a comparative
analysis of the architectures. The goal is to gain
practical understanding in advanced image processing
and neural network design.

I. BOUNDARY DETECTION
A. Introduction

This report for boundary detection introduces
a simplified version of the Probability of Bound-
ary (PB) algorithm. The primary objective was to
enhance the boundary detection process by using
a combination of various filter banks - Oriented
DoG filters, Leung-Malik Filters, and Gabor Fil-
ters. These filters are crucial for extracting detailed
texture information from images. Additionally, we
developed Texton, Brightness, and Color Maps to
support the detection process. This approach aims
to surpass traditional edge detection methods like
Canny and Sobel by incorporating texture, bright-
ness, and color gradients into the detection process.
The effectiveness of our method was evaluated
using the Berkeley Segmentation Data Set 500
(BSDS500).

B. Oriented Difference of Gradients Filter Banks

The Difference of Gaussian (DoG) filter is used
in image processing for detecting edges. It is made
by subtracting one Gaussian-blurred image from
another Gaussian-blurred image with a different
standard deviation. The formula for the DoG filter
is DoG(z,y) = G(z,y,01) — G(z,y,02), where
G(z,y,0) is the Gaussian blur at point (z,y) with
standard deviation o. To create the DoG filter, two
Gaussian filters with standard deviations ¢; and
o9 are first made. These filters are then used on
the image, and their results are subtracted to get
the final DoG filter output. The DoG filter finds
edges by showing the parts of the image where the
brightness changes a lot. In our implementation, we
used orientations from O to 360 degrees and scales
with 01 = 2 and o9 = 4. This allows the filter
to detect edges in different directions and scales,
which is useful for various tasks in computer vision.

Fig. 1: Oriented Difference of Gaussian Filters

C. Leung-Malik Filters

The Leung-Malik (LM) filter bank is an useful
tool in feature extraction, especially in texture anal-
ysis. It comprises a combination of Gaussian deriva-
tive filters and Laplacian of Gaussian (LoG) filters,
varied across multiple scales and orientations. The
Gaussian derivatives, generated by calculating first
and second-order derivatives of a Gaussian function,
are oriented in multiple directions to capture diverse
edge and texture features. The Laplacian of Gaus-
sian (LoG) filters, blending Gaussian smoothing



with the Laplacian filter, effectively detect blob and
edge features at different scales.

This multi-scale approach is realized by using a
range of standard deviations for the Gaussian func-
tions. In our implementation, two sets of LM filters
are created: a ’small’ set with standard deviations
[1,v/2,2,2+/2] and a ’large’ set with [ v/2, 2, 2v/2,
4], each with a kernel size of 49. These filter banks
are used for image processing tasks, such as texture
classification and scene analysis.

D. Gabor Filter

Gabor filters are used for texture and fea-
ture extraction, excelling in capturing spatial and
orientation-specific information. These filters are
constructed with varying orientations and scales,
defined by parameters such as standard deviations
o, kernel size, base orientation 6, wavelength A,
phase offset i, and aspect ratio . In our im-
plementation, the Gabor filters are generated over
multiple orientations by rotating the base kernel.
The parameters used include standard deviations
[12,9,7,5, 3], a kernel size of 49, base orientation
of 7/12, wavelength of 1, phase offset of 1, and
aspect ratio of 1, with 8 different orientations. This
configuration ensures that the filter bank is versatile
for analyzing images across a variety of scales
and orientations, making it particularly effective for
texture and edge detection.

o
2
2

Il
INEZ

—_—
—
=
E—
—
e
—

ZEHE

—_—
—
——
—
—
—
—

Fig. 2: Gabor Filters

E. Half Disc Masks

Half disc masks are crucial for local gradient
computation and texture feature analysis. These

masks are generated by dividing a circular shape
to create a “half disc’, made for different scales and
orientations. The process involves setting the kernel
size based on scales, each defined by a radius,
forming a circular mask, and then converting it into
a half disc by zeroing out one half.

The implementation rotates these half disc masks
across a set of predefined angles, including [180, 0,
210, 30, 225, 45, 240, 60, 270, 90, 300, 120, 315,
135, 330, 150] degrees. This rotation covers a range
of directional orientations. Post-rotation, the masks
are binarized to ensure distinct separation between
masked and unmasked regions, essential for precise
texture and gradient detection.

Half disc masks are created for scales [5, 15, 25],
offering a variety of masks suitable for different
image resolutions. These masks are instrumental
in edge detection and texture analysis tasks, where
they provide critical directional and local contrast
information.
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F. Texton Maps

Texton maps are used for texture recognition and
segmentation. The process for generating texton
maps, involves the application of filter banks -
Difference of Gaussian (DoG), Leung-Malik (LM),
and Gabor filters - to an input image.

Each filter bank is applied to the image sepa-
rately, and the resulting filtered images are com-
bined to form a comprehensive texton map. This



map integrates the textural information extracted by
each individual filter, highlighting diverse aspects of
the image’s texture.

Following the application of all filter banks,
the texton map undergoes KMeans clustering. This
clustering process groups pixels based on their
filter responses, categorizing them into clusters that
represent different texture patterns in the image.
For clustering, 64 clusters were chosen to balance
between capturing texture details and avoiding com-
plexity. This number ensures distinct texture dif-
ferentiation without over-segmentation, effectively
representing the image’s textural features for anal-
ysis. The result of this clustering is a texton map
where each pixel is assigned a cluster ID, indicating
its textural characteristics. This final texton map
serves as a detailed representation of the image’s
textural properties.

Fig. 4: Texton Map for Image 7

G. Texton Gradients

Texton gradients are a method of capturing the
texture information in an image. They are created by
applying a series of texture filters to the image, and
then computing the gradient of the filter responses.
This provides a detailed representation of the tex-
ture variation within the image, useful for tasks such
as image segmentation and pattern recognition.

Fig. 5: Texton Gradient for Image 7

H. Brightness Maps

Brightness maps are generated by converting the
image to grayscale and then clustering pixel intensi-
ties. This process simplifies the image, reducing it to
its basic luminance structure, which can be crucial
for analyzing images where color information is not
as relevant.
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Fig. 6: Brightness Map for Image 7

1. Brightness Gradients

Brightness gradients are derived from the bright-
ness maps. They represent the rate of change of
brightness across the image. By computing the
gradient of the brightness map, we can highlight
areas with significant luminance changes, which are
often indicative of edges or transitions in the image.



Fig. 7: Brightness Gradient for Image 7

J. Color Maps

Color maps are created by clustering pixel colors
in the RGB color space. This process reduces the
color complexity of the image, grouping similar
colors together. This simplification can be par-
ticularly useful for tasks that require color-based
segmentation or analysis.

Fig. 8: Color Map for Image 7

K. Color Gradients

Color gradients are similar to brightness gradients
but are derived from color maps. They represent
the rate of change in color information across the
image. These gradients are useful for detecting
color transitions and can provide insights into the
color dynamics of the image.

Fig. 9: Color Gradient for Image 7

L. Probability of Boundary Lite

PbLite is an advanced edge detection method
that combines the strengths of several approaches,
including texton, brightness, and color gradients.
PbLite outputs are generated by integrating these
various gradients, providing a more comprehensive
and nuanced representation of the edges in an
image, the drawback being that they are very slow
for CPU operations.

Fig. 10: PbLite Output for Image 7

PbEdges = —(Tg + ig +Cy)

(1)
M. Comparison with Sobel and Canny Methods

PbLite provides a range of benefits over conven-
tional techniques such as Sobel and Canny. While
the Sobel method may occasionally overlook crucial

O(w1 *xcanny Pb+waxsobel Pb)



image features, PbLite achieves equilibrium by in-
tegrating both texture and color data. In contrast to
the Canny method, known for generating numerous
false positives, the holistic approach of PbLite leads
to more precise and dependable edge detection.
Consequently, PbLite proves to be exceptionally
effective in situations where accurate delineation of
edges is essential.

N. Results

1. Comparison between Texton Maps, Color
Maps, and Brightness Maps for all Images in
the Test Set :

Fig. 11: Maps for Image 1

Fig. 15: Maps for Image 5

Fig. 12: Maps for Image 2

Fig. 17: Maps for Image 7

Fig. 13: Maps for Image 3

Fig. 18: Maps for Image 8



Fig. 19: Maps for Image 9

2. Comparison between Texton Gradients,
Color Gradients and Brightness Gradients for
all Images in the Test Set

Fig. 27: Gradients for Image 8

Fig. 23: Gradients for Image 4 Fig. 28: Gradients for Image 9



Comparison between Canny Baselines, Sobel
Baselines and Pblite Outputs for all Images in
the Test Set

- - Fig. 35: Pblite Output for Image 7

9: Pblite Output for Image 1

: -- Fig. 36: Pblite Output for Image 8

Fig. 30: Pblite Output for Image 2

Fig. 31: Pblite Output for Image 3 Fig. 37: Pblite Output for Image 9

II. DEEP LEARNING FOR CIFAR-10
CLASSIFICATION

Fig. 32: Pblite Output for Image 4 A. Introduction

For image classification, we focus on the ap-
plication and comparison of different neural net-
work architectures using the CIFAR-10 dataset.
The study included both basic and advanced ar-
chitectures such as BasicNetl(custom architecture),
Fig. 33: Pblite Output for Image 5 BasicNet2(improvement on the custom architec-
ture), ResNet(ResNet9), ResNeXt(ResNeXt9), and
DenseNet. We analyzed the impact of various ar-
chitectural choices on network performance, par-
ticularly looking at accuracy and computational
efficiency. The study also involved testing different
methods to enhance model accuracy, including data
standardization, learning rate adjustment, and data
augmentation.

Fig. 34: Pblite Output for Image 6



B. BasicNetl
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Fig. 38: BasicNetl Model Architecture

Sr. No. | Hyperparameter | Value
1 Epochs 15
2 Learning Rate le-4
3 Batch Size 32
4 Optimizer Adam
5 Weight Decay le-5

TABLE I: Hyperparameter Settings for BasicNetl
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Fig. 39: Accuracy and Losses for BasicNetl

C. BasicNet2
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Fig. 40: BasicNet2 Model Architecture



Sr. No. Hyperparameter Value Number of parameters in this model are 27

1 EPOCh'S 30 100% | 0000110000 [00:13<00:00, 765.26itis]

2 Learning Rate le-4 [282 10 31 6 13 1 4 14 sa 20] (0)

3 Batch Size 32 [ 689 6 3 1 2 1 2 9 71] (1)

e [51 1724 24 8 29 57 17 5 2] (2)

4 Optimizer Adam [18 4 60556 98138 53 52 12 9] (3)

- [ 6 © 21 1485 10 30 22 2 o] (4)

5 Weight Decay le-5 [ 8 2 26 81 64750 11 45 2 2] (5)

[ 5 232 21 17 992 4 5 2](6)

. : ; [10 o 19 10 58 21 2873 3 4] (7)

TABLE II: Hyperparameter Settings for BasicNet2 A S O B

[15 20 3 6 © 2 4 7 15928] (9)
(@) (1) (2) (3) (1) (5) (&) (7) (8) (9)
Accuracy: 82.96 %
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Fig. 41: Accuracy and Losses for BasicNet2

Number of parameters in this model are 27

100% | 50000/50000 [01:25<00:00, 485.94it/s]

[419¢ 29 1@9 36 78 17 29 73 233 106] (0)
[ 494338 12 11 8 10 14 15 89 454] (1)
[ 283 62478 91 500 159 266 144 56 17] (2)
[ 113 11 234 2785 476 766 291 238 50 36] (3)
[ 65 1 97 644439 50 118 135 23 8] (4)
[ 28 6 140 439 303 3685 79 201 13 16] (5)
[ 16 9 148 94 133 414471 34 37 17] (6)
[ 28 4 57 71 33 134 54331 10 24] (7)
[132 62 18 18 19 8 13 234632 75] (8)

87 95 21 14 18 15 18 78 92 4562] (9)
(@) (1) (2) (3) (1) (5) (6) (7) (8) (9)

Accuracy: 81.822 % )

Fig. 42: BasicNet2 TrainSet Confusion Matrix Fig. 44: ResNet Model Architecture



Sr. No. | Hyperparameter | Value
1 Epochs 30
2 Learning Rate le-4
3 Batch Size 32
4 Optimizer Adam
5 Weight Decay le-5

TABLE III: Hyperparameter Settings for ResNet

accuracy
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Fig. 45: Accuracy and Losses for Resnet

Number of parameters in this model are 98
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Fig. 46: ResNet TrainSet Confusion Matrix

Number of parameters in this model are 98

100% [ 10000110000 [00:36<00:00, 235.26its]

[9e2 3 42 1@ 12 2 4 3 16 6] (9)
[ 5946 4 3 2 2 1 o 4 33]()
[31 o870 23 39 16 14 3 1 3] (2)
[11 3 42811 36 62 15 12 2 6] (3)
[ 3 2 27 18946 5 8 7 o o] (4)
[ 6 © 27111 4079% 6 14 © 0] (5)
[ 5 0 43 55 23 1385 1 o 1] (6)
[ 7 o 20 13 49 24 183 e 3] (7)
[65 10 17 12 5 5 7 0867 12] (8)
[13 36 3 13 4 2 10925] (9)

3
(@) (1) (2) (3) (4) (5) (8) (7) (8) (9)

Accuracy: 87.99 %

Fig. 47: ResNet TestSet Confusion Matrix

E. ResNeXt

Fig. 48: ResNeXt Model Architecture



Sr' No. Hyperparameter Value Number of parameters in this model are 93

1 EpOChS 30 100% | 10000/10000 [00:33<00-00, 353.33it/s]

2 Leaming Rate le-4 [868 30 31 21 7 3 22 4 56 18] (0)

= [ 6933 o 4 o o 2 1 7 4a7] (1)

3 Batch Size 32 [45 6695 53 48 37 98 8 6 4] (2)

C [16 10 34715 19 104 75 14 5 8] (3)

4 OptlleCr Adam [12 1 61 48777 16 58 22 4 1] (4)

5 Weight Decay 1e-5 [ 5 5 20134 31758 27 17 1 2] (5)

[ 3 3 22 31 7 13916 3 1 1] (6)

[23 2 28 52 48 50 6781 2 8] (7)

TABLE IV: Hyperparameter Settings for ResNeXt La o1 30 7 a7 aol (5)

[10 52 2 3 @ 3 6 o 90914] (9)
(@) (1) (2) (3) (4) (5) (8) (7) (8) (9)
Accuracy: 81.74 %

Fig. 51: ResNeXt TestSet Confusion Matrix
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Fig. 50: ResNeXt TrainSet Confusion Matrix Fig. 52: Accuracy and Losses for Densenet



Number of parameters in this model are 527
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[ 174878 7 11 e 5 7 1 13 61] (1)
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Accuracy: 86.468 %

Fig. 53: DenseNet TrainSet Confusion Matrix

Number of parameters in this model are 527
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Fig. 54: DenseNet TestSet Confusion Matrix

G. Number of Parameters

Model Number of Parameters
BasicNetl 67,497,034
BasicNet2 1,437,642
ResNet 11,025,994
ResNeXt 3,270,794
DenseNet 342,340

TABLE VI: Comparison Between Number of
Model Parameters in Each Architecture

H. Architectural Comparisons

« (BasicNetl): This model is a straightforward
convolutional neural network comprising three
convolutional layers with increasing filter sizes
(64, 128, 256). Each convolutional layer is
followed by a leaky ReLU activation function,
which helps the model learn non-linear rela-
tionships in the data. The absence of pool-
ing or normalization layers makes this model
less complex but could potentially limit its
ability to generalize across varied datasets. It
concludes with a series of linear layers that
condense the high-dimensional feature maps
into a final output for classification.

« (BasicNet2): Building upon the design of Ba-

sicnetl, this model introduces batch normal-
ization and max pooling layers in each con-
volution block. Batch normalization helps in
stabilizing the learning process and normaliz-
ing the output of each convolution layer, which
can lead to faster convergence and improved
overall performance. Max pooling is used for
reducing the spatial dimensions of the feature
maps, which not only helps in reducing the
computational load but also aids in achieving
some level of translational invariance.
ResNet: ResNet, or Residual Network, in-
troduces a revolutionary concept of shortcut
connections that skip one or more layers.
These connections allow the gradient to flow
directly through the network, addressing the
problem of vanishing gradients in deep net-
works. ResNet’s design enables the training of
substantially deeper networks than was previ-
ously feasible. Each residual block in ResNet
is a mini-network with convolution, batch nor-
malization, and ReLU layers, and these blocks
are stacked to form the complete architecture.
ResNet is particularly effective in learning
identity functions, ensuring that the added lay-
ers can at least maintain the performance of
the network, if not improve it.

ResNeXT: ResNeXT is an extension of the
ResNet architecture, introducing the concept of
grouped convolutions. This means that instead
of a single set of filters being applied in the
convolutional layer, the layer has multiple sets
(or groups) of filters, with each set processing
a subset of input channels. This cardinality
(the number of groups) adds a new dimension
to the network’s architecture, allowing it to
learn more complex features. ResNeXT man-
ages to strike a balance between increasing
the model’s capacity and its complexity, often
resulting in improved performance on various
benchmarks.

DenseNet: DenseNet, short for Densely Con-
nected Convolutional Networks, is unique in
the way each layer connects to every other
layer in a feed-forward fashion. In DenseNet,



each layer receives feature maps from all pre-
ceding layers, concatenates them, and passes
its feature map to all subsequent layers. This
architecture leads to substantial feature reuse,
which makes the network more parameter-
efficient. Transition layers, consisting of batch
normalization, convolution, and pooling, are
placed between dense blocks to control the
growth of the feature map sizes and to improve
computational efficiency.

« General Comparison: When comparing these
architectures, DenseNet stands out for its pa-
rameter efficiency and feature reuse capabil-
ities, making it well-suited for tasks where
model size and memory footprint are crucial.
ResNet and ResNeXT are more adept at train-
ing deeper networks due to their shortcut con-
nections, which alleviate the vanishing gradi-
ent problem. BasicNetl and BasicNet2, being
less complex, might be preferable for smaller
datasets or when computational resources are
limited, though they might not perform as well
on more complex tasks. The choice among
these architectures depends on a variety of
factors including the complexity and size of the
dataset, computational constraints, and specific
requirements of the task at hand. Accuracy for
30 epochs is comparable for the rest, except
DenseNet performs better than the rest.
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