
Homework0: Alohomora
Dhrumil Kotadia

Robotics Engineering Department
Worcester Polytechnic Institute

Worcester, Massachusetts
Using One Late Day

I. PHASE1: SHAKE MY BOUNDARY

This section focuses on the implementation of the pb-
lite boundary detection algorithm, where ’pb’ denotes the
Probability of Boundary. The algorithm assesses the likelihood
of each pixel in the input image belonging to an edge by
considering gradients of intensity values, texture and color.
The process unfolds through four key steps:

• Generation of a filter bank comprising of Derivative of
Gaussian filters, Leung-Malik filters and Gabor filters

• Creation of texton, brightness, and color maps
• Development of texton, brightness, and color gradient

maps
• Boundary detection using these maps, along with Sobel

and Canny baseline techniques

A. Filter Bank Generation

To capture texture information from images, a diverse set of
filters is used to create a filter bank. The three primary types
of filters utilized in this phase are:

1) Oriented Derivative of Gaussian (DoG) Filters:
• Obtained by convolving a Sobel operator on a

Gaussian kernel.
• Includes DoG filters with 2 scales and 16 orienta-

tions.
• Illustrations of Oriented DoG filters are depicted in

Figure 1.

Fig. 1. Derivative of Gaussian Filters

2) Leung-Malik Filters:
• Comprises 48 filters of multiple scales and orienta-

tions.
• Involves first and second-order derivatives of Gaus-

sians, Laplacian of Gaussian (LoG) filters, and
Gaussians.

• Two Leung-Malik filter banks are generated: LM
Small and LM Large.

• LM Small filters consider scales σ =
{1,

√
2, 2, 2

√
2}, while LM Large (LML) filters

consider σ = {
√
2, 2, 2

√
2, 4}.

Fig. 2. Leung-Malik Small

Fig. 3. Leung-Malik Large

• Filter bank illustrations for LM Small and LM Large
are presented in Figures 2 and 3.

3) Gabor Filters:
• Designed based on the human eye’s operation.
• Features a Gaussian kernel modulated by a sinu-

soidal wave.
• The Gabor filter bank created for this experiment is



Fig. 4. Gabor Filter

shown in Figure 4.

B. Texton, Brightness and Colormap

After the generation of filter banks, each filter from the
previously generated banks is applied onto the input images.
If the filter banks encompass N filters, the outcome is an N-
dimensional vector corresponding to each pixel. Following
this, the N-dimensional vectors are replaced with discrete
texton IDs. This replacement is achieved by clustering the filter
responses for each pixel into K textons using KMeans cluster-
ing. Subsequently, each pixel in the image is substituted with
the discrete texton ID obtained through KMeans clustering,
resulting in the generation of the Texton map (T). The output
is a single-channel image with values ranging from [1, 2, ...,
K]. For this experiment, a value of 64 was chosen for K.

Similarly, brightness and color maps are generated using
analogous methods. To obtain the Brightness map (B), clus-
tering is applied to the brightness or intensity values through
KMeans clustering on the grayscale equivalent of the color
image. Likewise, Color map (C) is obtained by performing
KMeans clustering on the default three-channel color image.
A K value of 16 was selected for both brightness and color
maps in this experiment.

The Texton, Brightness and Color Maps of all input images
observed in figure 5



Fig. 5. Texton, Brightness and Color Map for Input Images

C. Texton, Brightness asnd Color Gradients

Gradient maps establish local gradient measurements, in-
dicating the changes in texture, brightness, and color distri-
butions at a specific pixel. To compute Texton, Brightness,
and Color gradients, it is essential to calculate variations in
values across diverse shapes and sizes. Therefore, an initial
step involves generating half-disc masks and employing the
chi-square distance metric.

• Half-disc Masks:
– These masks consist of pairs of binary images rep-

resenting half-discs.
– Eight orientations of half-disc masks are created, as

illustrated in figure 6.
• Chi-Square Distance:

– The Chi-Square Distance metric is utilized to
measure the dissimilarity between two histograms,
specifically, the distinction in distributions within left
and right half-disc pairs.

– The half disc masks created are applied to the
Texton,Brightness and Color Maps and their Chi-
Square distance is calculated to provide the Texton,
Brightness and Color Gradients shown in figure 7

Fig. 6. Generated Half Disc Masks

Fig. 7. Texton, Brightness and Color Map for Input Images



D. PB-Lite Output

The PB-Lite output is calculate based on the equation

PBEdges =
Tg +Bg + Cg

3
◦(w1∗cannyPb+w2∗sobelPb)

Here, w1 and w2 are chosen to be 0.3 and 0.7 respectively.
The output Images generated are shown in figure 8

Fig. 8. Canny Baseline, Sobel Baseline and PBLite Output

E. Observation

It can be observed that the PBLite output reduces a lot
of false positives compared to Canny Baseline and is able
to highlight some minute details that are missed by Sobel
baseline. It also has an advantage that there is a lot of room
for tuning. The number of filters and the parameters in PBLite
provide a lot of robustness since it can be tuned for various
scenarios.

II. PHASE2: DEEP DIVE ON DEEP LEARNING

A. First Neural Network

For the first neural network, a basic network is implemented
which has 2 convolutional layers, 2 pooling layers, a dropout
layer and 2 fully connected layers. Both convolutional layers
go through ReLU activation followed by Maxpool pooling
layers. This is followed by a fully connected layer with
ReLU activation. After this we have a 2D dropout layer with
probability 0.25 followed by another fully connected layer.
This makes up the entire network. Batch size of 32 was
selected for training and AdamW optimiser was chosen. The
AdamW optimiser has learning rate of 0.01 and weight decay
of 0.0001. This is run for 20 epochs and the result is shown
in the figure 9. The final accuracy obtained while training is
41.85%. The observation here is that the accuracy does not
increase. It waivers slightly up and down. The reason behind
this can be high learning rate.. The testing accuracy for this
model is also similar (41.06%). The number of parameters in
this model are 8.



Fig. 9. Basic Network with learning rate 0.01 and batch size 32

The confusion matrix of training this model is shown in
figure 10

Fig. 10. Basic Network training confusion matrix

The confusion matrix of testing this model is shown in
figure 11

Fig. 11. Basic Network testing confusion matrix

B. Updated Basic Network

The model was trained again with different parameters.
Now, the learning rate was kept variable where it decreases
with increasing number of epochs. LR Scheduler was used to
have a decay with step size of 5 and gamma 0.1. Batch size
was updated to 128. The resulting plot can be seen in figure
12.

Fig. 12. Basic Network with learning rate 0.001 and batch size 128

Here it is evident that the accuracy increases over time and
the loss decreases. The confusion matrix of training this model
is shown in figure 13



Fig. 13. Updated Network training confusion matrix

The confusion matrix of testing this model is shown in
figure 14

Fig. 14. Updated Network testing confusion matrix

C. Resnet

ResNet is an architecture that uses the idea of residual
blocks to overcome the problems of diminishing performance
in very deep networks. After each residual block, the input
of the residual block is added to the output of the residual
block. This connection allows the network to skip one or more
layers during training. The model of the implemented ResNet
is shown in figure 17

Fig. 15. ResNet Model

The learning rate is set to 0.001 and the batch size is 128.
The model is trained for 5 epochs. The plot is visible in figure
16



Fig. 16. ResNet Training Accuracy and Loss

D. ResNext

ResNext is an architecture that is an extension of Resnet.
It uses the residual blocvks just like the resnet architecture.
The only difference is cardinality. ResNext has a lot of layers
inside the residual block parallelly training before they are all
concatenated together and then added to the input just like the
Resnet architecture. The use of cardinality allows ResNeXt to
achieve competitive or better results than traditional ResNet
architectures.

Fig. 17. ResNext Model

The learning rate is set to 0.001 and the batch size is 128.
The model is trained for 5 epochs. The graph is visible in
figure 18

Fig. 18. ResNet Training Accuracy and Loss

E. Densenet

Densenet is an architecture where concatenation occurs after
every layer in a dense block. If there are l previous layers in
a dense block, then the output of the current layer is concate-
nated with l-1 outputs of all previous layers. In the current
implementation, 2 such dense blocks are implemented each
having 3 layers with a transitional layer after each dense block.
A growth rate of 12 is used in the current implementation.
It has the following layers: First, a convolution layer, then a
dense block which has 3 convolutional layers. Concatenation
is done after every layer in the densenet block. After that
there is a transitional layer which comprises of maxpool and
a convolutional layer. After that, another dense block which
has 3 more convolutional layers with concatenation after each
layer. Then there is a maxpool and a convolutional layer,
followed by a fully connected layer which gives the output.
The learning rate is set to 0.001 and the batch size is 128. The
model is trained for 5 epochs. The Graph for DenseNet is as
shown in figure 20

Fig. 20. DenseNet Accuracy and Loss

F. Analysis

The basic network really underperforms but improves when
the parameters are changed in the updated Basic network. The
ResNet architecture gets high accuracy even in low epochs and
performs much better than basic architecture. ResNext also



Fig. 19. DenseNet Model

perform much better than the basic architecture but DenseNet
does not perform as well. The cause behind this can be the
fact that it might not be implemented and tuned properly.


