
Computer Vision Homework 0 - Alohomora
Kaushik Kavuri Subrahmanya

Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts 01609
Email: ksubrahmanya@wpi.edu

Using 1 Late Day

Abstract—In the second phase, multiple neural network ar-
chitectures were implemented to train on CIFAR-10 and their
accuracies are compared. The neural networks include an initial
simple neural network implemented and more effecient ResNet,
ResNeXt, DenseNet architectures were implemented.

I. PHASE 1

In this phase, edges are detected using the pb-lite algorithm
which is an upgrade over the standard Canny and Sobel
algorithms. To achieve this better edge detection, we first
construct various filter banks. Then we filter the images using
these filter banks. Then we build texture, brightness and colour
maps for each image. Then we take texture, brightness and
colour gradients for each image. Finally, we combine these
gradients with baseline edges obtained from from Canny and
Sobel algorithms. We shall go through these steps with their
outputs below.

A. Filter Banks

These filter banks help identify edges and boundaries by
checking for rapid changes in intensity.

1) Oriented DoG Filter: These filters are created by con-
volving a simple Sobel filter and a Gaussian kernel and
rotating the result. The filter bank looks as shown in fig.1

Fig. 1: Oriented DoG

2) Leung-Malik Filters: LM filter bank consists of 48
filters. They consist first and second order derivatives of
Gaussians at 6 orientations and 3 scales for a total of 36.
Other 12 consists 8 Laplacian of Gaussians and 4 Gaussians.
The scales used for the filters are [1,

√
2, 2, 2

√
2] for LM

small, and [
√
2, 2, 2

√
2, 4] for LM Large. The result is shown

in fig.2,3
3) Gabor Filters: These filters are based on human visual

system and they are obtained by modulating a Gaussian kernel
by a sinusoidal plane wave. The result is as follows in fig.4

Fig. 2: LM Small

Fig. 3: LM Large

B. Texton, Brightness and Colour Maps

Here we use KMeans clustering to cluster the respective
property of each image to create image maps. The results of
this is presented in fig.5-15

C. Texton, Brightness and Colour Gradients

We use Half disk maps (shown in fig.15) to create colour
gradients for each image. These maps help compute chi-
square distances using a filtering operation which is faster than
looping over each pixel neighborhood and aggregating counts
for histograms.

The results of these are shown in fig. 16 - 25

Fig. 4: Gabor Filter bank

Fig. 5: (T ,B, C) for Image 1



Fig. 6: (T ,B, C) for Image 2

Fig. 7: (T ,B, C) for Image 3

Fig. 8: (T ,B, C) for Image 4

Fig. 9: (T ,B, C) for Image 5

Fig. 10: (T ,B, C) for Image 6

Fig. 11: (T ,B, C) for Image 7

Fig. 12: (T ,B, C) for Image 8

Fig. 13: (T ,B, C) for Image 9

Fig. 14: (T ,B, C) for Image 10

Fig. 15: Half Disk Maps

Fig. 16: (Tg,Bg, Cg) for Image 1

Fig. 17: (Tg,Bg, Cg) for Image 2

Fig. 18: (Tg,Bg, Cg) for Image 3

Fig. 19: (Tg,Bg, Cg) for Image 4

Fig. 20: (Tg,Bg, Cg) for Image 5



Fig. 21: (Tg,Bg, Cg) for Image 6

Fig. 22: (Tg,Bg, Cg) for Image 7

D. PB Lite Output

Using and combining all the above filters, we obtain the
following results in figs. 26-35

II. PHASE 2

In the second phase of the homework, a simple neural
network was implemented, and then, ResNet, ResNeXT, and
DesnseNet neural network architectures were implemented.
Accuracy and Loss of these architectures over Epochs are
reported. The heat maps of the confusion matrix for each
architecture’s trained model are also reported.

A. Simple Neural Network

A simple neural network has been implemented with a
single batch of sequential layers between Input and Output.
The tensorboard snaphot of the network is shown in fig.
Adamw optimizer and Batch normalization was used to opti-
mize this network. The number of parameters in this model
are 18,896,490, and the model has been trained for 50 epochs
which took around 19 mins to train. The mini batch size used
for training was 256.

1) Results: The trained model had an accuracy of 63% on
the test data set and 99% on the trained data set.

Fig. 23: (Tg,Bg, Cg) for Image 8

Fig. 24: (Tg,Bg, Cg) for Image 9

Fig. 25: (Tg,Bg, Cg) for Image 10

Fig. 26: Canny, Sobel baselines and PB-Lite for Image 1

Fig. 27: Canny, Sobel baselines and PB-Lite for Image 2

Fig. 28: Canny, Sobel baselines and PB-Lite for Image 3

Fig. 29: Canny, Sobel baselines and PB-Lite for Image 4

Fig. 30: Canny, Sobel baselines and PB-Lite for Image 5

Fig. 31: Canny, Sobel baselines and PB-Lite for Image 6



Fig. 32: Canny, Sobel baselines and PB-Lite for Image 7

Fig. 33: Canny, Sobel baselines and PB-Lite for Image 8

Fig. 34: Canny, Sobel baselines and PB-Lite for Image 9

Fig. 35: Canny, Sobel baselines and PB-Lite for Image 10

Fig. 36: Simple Neural Network

Fig. 37: Test CM

Fig. 38: Train CM

B. ResNet

Implemented the ResNet architecture. The loss, accuracy
plots and the confusion matrix are shown in the figure.39-44

C. ResNext

Implemented the ResNext architecture. The loss, accuracy
plots and the confusion matrix are shown in the figure.45-50

D. DenseNet

Implemented the ResNet architecture. The loss, accuracy
plots and the confusion matrix are shown in the figure. 51-55

III. CONCLUSION

Here we detected edges and then trained neural networks to
classify images using the above mentioned neural architectures

Fig. 39: training accuracy per epoch

Fig. 40: loss per epoch



Fig. 41: ResNet Network

Fig. 42: Simple Neural Network

Fig. 43: Simple Neural Network

Fig. 44: training accuracy per epoch

Fig. 45: loss per epoch

Fig. 46: ResNet Network

Fig. 47: Simple Neural Network

Fig. 48: Simple Neural Network

Fig. 49: training accuracy per epoch



Fig. 50: loss per epoch

Fig. 51: DenseNet Network

Fig. 52: DenseNet

Fig. 53: DenseNet train

Fig. 54: training accuracy per epoch

Fig. 55: loss per epoch

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

Model Name No. Parameters Total Size(MB) Params Size (MB)

Custom CNN 18,896,490 75.73 72.08
ResNet 197274 3.47 0.75
ResNext 3270794 42.50 12.48
DenseNet 10832 3.45 0.04

TABLE I: Size of the Models


