
HW0 : Alohomora
Anuj Jagetia

M.S. Robotics Engineering
email : ajagetia@wpi.edu

I. PHASE 1 : SHAKE MY BOUNDARY

This goal of this section is to apply the pb-lite border (a
lite version of probability of border). It finds boundaries by
assessing brightness, color, and texture information across many
scales (different sizes of objects/image) in order to detect edges
which produces a probability of border for each pixel. There
are four steps to this process:

1) Defining different Filter Banks
2) Computing Texton, Brightness and Color Maps
3) Finding gradients for above maps
4) Combining the outputs of Sobel and Canny Baselines

A. Filter Banks

Filtering the image using a collection of filter banks is the
initial stage in the pb lite border detection process. For this, we
created three distinct sets of filter banks.

1) Oriented Difference of Gaussian: This a Convolution of
Sobel operator to a gaussian kernel and rotated in 16 different
orientations within 0 to 360 degrees and 2 scales.

Fig. 1. Oriented DoG Filter Bank

2) Leung-Malik Filters: It is a filter with multiple scales and
orientations. In total 48 filters comprises of Gaussian, Laplacian,
First and Second order derivatives of Gaussians. LM Filter
is divided in two categories Small and Large LM filters, the
difference between them is they have different scales.

3) Gabor Filters: The basis for the construction of gabor filters
are what we found in the human visual system. A sinusoidal

Fig. 2. LMS Filter Bank

Fig. 3. LML Filter Bank

plane wave modulates a gaussian kernel function, which is
called a gabor filter.

B. Texton, Brightness, Color Maps

Texton maps are made by stack of the outputs which is
produced after applying each filters to the image. Now we assign
a separate texton ID to each pixel and group the pixels with
similar texture attributes, which is done by KMeans clustering
approach where the related pixel values are assigned to one
cluster. In this instance, each pixel is classified using 64 cluster



Fig. 4. Gabor Filter Bank

centers. As the number of cluster increases the texture details
also increase and vice versa.

The texture properties of the image are provided by the texton
map. A vector of filter responses centered on each pixel is
produced when a single filter—168 in this example—is applied
to the image to create Texton maps. At each pixel, we currently
have 168 filter responses. A discrete texton ID is then assigned
to each pixel after the pixels with similar texture properties are
grouped using the K-Means clustering method with a number
of clusters equal to 64. The intensity and color values for each
pixel are similarly encoded using the brightness and color maps,
respectively.

Fig. 5. Texton, Brightness, Color Maps for Images

C. Texton, Brightness, Color Gradients

Gradient maps are useful in order to understand the pixel
neighbourhoods where change in texture, intensity and color
properties was happening. We must compute value differences



across various shapes and sizes in order to compute gradients for
texton, brightness, and color. As a result, the chi-square distance
and half disk mask are first constructed.

1) Half-disc masks: The pairs of binary images of hard-disc is
known as hard disk mask. These discs are generated for different

Fig. 6. Texton, Brightness, Color Gradients for Images

orientations.

Fig. 7. Half-Disc Filter Bank

2) Chi-Distance: The Chi-Distance is used to calculate the
difference between the distributions in left and right half-disc
pairs.

D. Boundary Detection

To create the pb-lite output, we have all of the gradient maps
for the input pictures. But before that we read the Sobel and
Canny baselines for these input images in order to do so.



E. Results for Phase 1

Based on the findings, we can conclude that Pb-lite performs
better at canceling noise in the Canny output; however, in terms
of edge detection, Sobel perform better. Pb-lite can control the
intensity of texture, brightness and color details, which can be

Fig. 8. Canny, Sobel and Pb-Lite Output of Images

obtained by choosing optimized weights. Additionally, the filter
bank is crucial as it allows for the improvisation of responses
using the best scales and kernel sizes.

II. PHASE 2 : DEEP DIVE ON DEEP LEARNING

The goal of this phase was to implement several neural net-
work architectures for the purpose of performing classification
operations on the CIFAR-10 dataset, which consists of 10,000
testing and 50,000 training 32x32 images from 10 classes.

Unfortunately, I was only able to train one model i.e., Basic
Neural Network. But we were supposed to develope 3 more
models in the experiment, which were Resnet, ResNeXt and
DenseNet

A. Basic Neural Network

To classify the images into ten classes, the basic architecture
consists of 2 linear layers and 3 convolution layers with max
pooling. SGD(Stochastic Gradient Descent) is the employed
optimizer, with a learning rate of 0.0001. The network is
structured with the following parameters.

1) There are 15 epochs.
2) There are 30 mini batches.
3) SGD is the optimizer.
In the absence of standardization and data augmentation,

27.57 % accuracy was attained on the testing set.

B. Improved Neural Network

To enhance the performance of our neural network, we can
make adjustments such as changing the scale, tuning the decay
rate, decreasing batch size, adding batch normalization between
layers, and modifying hyperparameters like the number of layers
or neurons in a particular layer.

In the initial attempt, we achieved an accuracy of approxi-
mately 28 % and by simply adjusting the batch size and the
number of epochs per batch, we observed a 7 % improvement
without introducing additional layers or neurons. It’s important



(a) Training Accuracy (b) Training Loss

Fig. 9. Basic Neural Network

(a) Training Accuracy (b) Training Loss

Fig. 10. Improved Neural Network

to note that as accuracy increases, the training time of the model
also tends to increase.

For the improved basic architecture, we utilized the following
parameters:

1) 40 epochs
2) 15 mini-batches
3) Stochastic Gradient Descent (SGD) optimizer
With this we achieved a total accuracy of around 35

III. RESNET, DENSENET

I can not find a way to properly deploy a ResNet and
DenseNet Network, I had lots of Bugs in the code therefore
could not train the model but I am trying to find a way to
remove the problems and train a ResNet model.


	Phase 1 : Shake My Boundary
	Filter Banks
	Texton, Brightness, Color Maps
	Texton, Brightness, Color Gradients
	Boundary Detection
	Results for Phase 1

	Phase 2 : Deep Dive on Deep Learning
	Basic Neural Network
	Improved Neural Network

	ResNet, DenseNet

