
Homework 0 - Alohomora
Niranjan Kumar Ilampooranan
MS Robotics Graduate Student
Worcester Polytechnic Institute

(Using 3 late days)

Abstract—Two different applications - Boundary Detection
and Image Classification - are the focus of this homework and
the solutions for the above using the specified algorithms and
architectures are discussed in this report. Boundary detection
- Phase 1 - involves filter design for convoluting over the test
image set to obtain a mapping of confidence values on the
presence of boundaries of the picture (Pb) and comparing the
obtained results with Canny and Sobel - two famous algorithms
for the same application. For image classification, a simple neural
network is developed and augmented as per given suggestions
along with training and testing with the CIFAR-10 dataset along
with other architectures such as ResNet, ResNeXt, and DenseNet.
The performance of these networks are provided in the form of
plots and confusion matrix.

PHASE 1

The first phase of the homework involves developing Pb-
lite, a boundary detection algorithm, from scratch (albeit a
simplified version of Probability of boundary algorithm) and
pitting it against the baselines of well-known algorithms -
Canny and Sobel. To do so, some filters such as Gabor and
Leung-Malik are required along with half-disk masks. This
shall be explored in subsequent sections in which the entire
process behind developing pb-lite is explained. The crucial
landmarks are as follows.

• Developing DoG, LM, Gabor, and Half-Disk filter banks
• Generating the Texton, Brightness, and Color Maps along

with obtaining gradient maps Tg , Bg , and Cg respectively
• Using the above to obtain the response of image to pb-lite

and compare with the Sobel and Canny baselines

A. Filter Generation

The DoG filter bank is quite straightforward in its genera-
tion. First, Gaussian filters of different scales are convoluted
with Sobel kernel and is further rotated to obtain filters of
various orientations. For this homework, scale of 1 and

√
2

is used. The number of orientations for which the filter was
rotated after convolution is 16. This gives a total of 32 oriented
DoG filters. The filters are shown below in Fig. 1.

As far as the LM filters are concerned, there are four
different sets to it (for each of LM large and LM small filter
banks). The LM small filter bank is shown in Fig. 2 and LM
large filter bak is shown later in Fig. 3. The first two sets
involve obtaining the first and second order derivative of the
Gaussian filter for different sets of scaling and orientations.
Furthermore, there is an elongation factor in the standard
deviation in the x and y components involved (σy = 3σx).
This gives 36 filters in total for these sets.

Fig. 1. Oriented DoG Filter Bank

Fig. 2. LM Small Filter Bank

In the third set, eight Laplacian of Gaussian (Laplacian
operator over Gaussian) filters are generated and regular
Gaussian filters for the final set. The different between LM
large and LM small filter banks are the usage of different
scaling factor between them (LM large uses a larger scaling
factor/standard deviation).

Fig. 3. LM Large Filter Bank



The Gabor filter bank can be generated by convoluting
the standard Gaussian kernel with sinusoid (equivalent to
multiplying the Fourier transforms of both the signals). The
result is shown in Fig. 4. Multiple filters are obtained for
different scales and orientations.

Fig. 4. Gabor Filter Bank

Finally, the half-disk masks or filters are obtained by
populating a blank image (2D array of zeros) with ones in
a semicircular region and the successive filter is populated
in a way that it complements its predecessor. This filter is
key in calculating the χ2 distance which will be the focus of
discussion next. The half-disk masks are shown below in Fig.
5. These masks shown are for different scaling and orientations
(three scales and sixteen orientations respectively)

Fig. 5. Half-disk Mask Sets with Different Scales and Orientations

B. Texton, Brightness, and Colour Map

Now that the required filters are generated, the next focus
would be generating the texton (T ), brightness (B), and colour
maps (C). All these involve clustering sets of images based on
different properties (response to filters, brightness, and colour).
For the clustering, K-Means is used (64 clusters for texton, and
16 each for the latter two).

The results are shown in the array of figures from Fig.
6 to Fig. 15. For (T ), the test images are convoluted with
different filter banks and all the responses are appended and

then clustered. It is more straightforward in the case of B and
C where the images are clustered as is (in the case of B, the
image is converted to grayscale before clustering).

Fig. 6. T ,B, C for Test Image 1

Fig. 7. T ,B, C for Test Image 2

Fig. 8. T ,B, C for Test Image 3

Fig. 9. T ,B, C for Test Image 4

Fig. 10. T ,B, C for Test Image 5

Fig. 11. T ,B, C for Test Image 6



Fig. 12. T ,B, C for Test Image 7

Fig. 13. T ,B, C for Test Image 8

Fig. 14. T ,B, C for Test Image 9

Fig. 15. T ,B, C for Test Image 10

C. Texture, Brightness and Colour Gradients

In this section, the process used for obtaining texture,
brightness, and colour gradients is discussed. Here is where the
half-disk masks come into use. This process entails calculating
the χ2 distance in each of the maps, which captures the change
in distribution of values - brightness for example - per pixel.
It is a frequently used metric to compare two histograms, or
in our case, g and h.

For the χ2 distance, the histogram values are obtained by
filtering the map with the left half and right half disks to
obtain g and h respectively. It is quite efficient compared to
using nested loops over pixel to calculate the same. The χ2

distance is calculated as follows.

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

, where K is the number of clusters.
After the calculation, the average of this measure for each

image is taken and stored. The results for Texture (Tg),
Brightness (Bg) and Colour Gradients (Cg) are shown below
in figures Fig. 16 to Fig. 25.

Fig. 16. Tg ,Bg , Cg for Test Image 1

Fig. 17. Tg ,Bg , Cg for Test Image 2

Fig. 18. Tg ,Bg , Cg for Test Image 3

Fig. 19. Tg ,Bg , Cg for Test Image 4

Fig. 20. Tg ,Bg , Cg for Test Image 5

Fig. 21. Tg ,Bg , Cg for Test Image 6



Fig. 22. Tg ,Bg , Cg for Test Image 7

Fig. 23. Tg ,Bg , Cg for Test Image 8

Fig. 24. Tg ,Bg , Cg for Test Image 9

Fig. 25. Tg ,Bg , Cg for Test Image 10

D. Boundary Detection - Pb, Canny, and Sobel

With the sets of processed images in hand, the boundary
detection can be performed using Pb-lite for comparison with
the Canny and Sobel baselines. Before moving ahead with
these algorithms, the ground truth images are provided in Fig.
26. Essentially this set would give an idea on the crucial
features to be detected by these algorithms.

Fig. 26. Ground truth for Test Image 2

Fig. 27. Ground truth for Test Image 1, 3, 4

Fig. 28. Ground truth for Test Image 5, 6, 7

Fig. 29. Ground truth for Test Image 8, 9, 10

The results obtained from pb-lite is shown along with Canny
and Sobel baseline results from Fig. 30 to Fig. 39. The con-
fidence or probability of boundary at each pixel is calculated
as follows based on the gradients obtained previously.

PbEdges =
(Tg + Bg + Cg)

3
⊙ (w1 ∗ Canny + w2 ∗ Sobel)

,where Canny and Sobel denotes the strength of boundaries
conveyed by respective algorithm, ⊙ denotes the Hadamard
product operator and w1, w2 are the weights associated with
them for Pb calculation.

Fig. 30. Sobel, Canny, Pb for Test Image 1

Fig. 31. Sobel, Canny, Pb for Test Image 2

Fig. 32. Sobel, Canny, Pb for Test Image 3



Fig. 33. Sobel, Canny, Pb for Test Image 4

Fig. 34. Sobel, Canny, Pb for Test Image 5

Fig. 35. Sobel, Canny, Pb for Test Image 6

Fig. 36. Sobel, Canny, Pb for Test Image 7

Fig. 37. Sobel, Canny, Pb for Test Image 8

Fig. 38. Sobel, Canny, Pb for Test Image 9

Fig. 39. Sobel, Canny, Pb for Test Image 10

E. Observations and Inference

On an overview, the Sobel seems to have performed worse
compared to the other two while Canny provides the brightest
boundary of the required features in the test images with the
result of pb-lite not far off. Both Canny and pb-lite accentuates
the required features in the test image but Canny seems to have
outperformed pb-lite. Although one of the drawbacks observed
in the results of Canny baselines, which is that it accentuate
features that are not present in the ground truth, which also
affects the output of pb-lite.

This performance difference could be leveled or even sur-
passed by pb-lite through one of the methods mentioned below,
if not all.

1) Increase the weights given to Canny or make it dynamic,
since equal, static weights to the baselines in the formula
can only provide so much

2) Instead of taking the average of Tg,Bg, and Cg , a
preference could be given to one on a trial-based method
by using weighted average to see which results in better
performance

3) Changes in the filter scales or the filters, even, could
result in marginal improvement in the performance as
they directly correlated to generation of texton, bright-
ness, and colour maps.

PHASE 2

For this section, the network trained on the CIFAR-10
dataset (50,000 images for train set and 10,000 images for
test set) for image classification is discussed along with some
results (Plots, Confusion Matrices). For starters, the networks
used are the following.

• My Network (simple CNN)
• My Network - Modified
• ResNet
• ResNeXt
• DenseNet

A. My Network

This network is a basic convolutional neural network for
classification of images consisting of convolutional layers and
Maxpool for extracting various features from the input and
downsampling, respectively. This output is then passed to fully
connected layers that make a prediction on the class of image
(array of probabilities).

Accordingly, the network has two pairs of convolutional
layer and MaxPool after which there are pairs of fully
connected layers and ReLU activation layer after each fully
connected layer (named Linear). The architecture is depicted
in Fig. 40 below. The small oval depicts ReLU. Also, the
number of parameters for this network is 1,74,260.



Fig. 40. Architecture of My Network

B. My Network - Modified
This network is quite similar to its predecessor along with

some minor changes. This can be seen in the architecture
shown in Fig. 41. To modify the current network, some tips
used were the following.

• Added Batch Normalization between layers
• Increased batch size
First, the batch normalization layers (BatchNorm in the

picture) is added after a convolutional layer and a fully
connected layerThen, the minibatches were increased from 256
to 512. The number of parameters are 1,66,000. The results
of these additions will be explored in the section of Analysis.

C. ResNet
An adaptation of the ResNet from the famous work is done

here and is a simplified version of the same. The architecture
of the implementation can be seen in Fig. 42. The added
feature here compared to the previous networks is the ability
of output from much previous layer to skip over the next layers
and pass to a much further layer (depicted in Fig. 42). This
allows to alleviate the issue of vanishing gradients in deep
layers. The number of parameters in the implementation is
1,67,78,240.

Fig. 41. Architecture of My Network - Modified

Fig. 42. Architecture of ResNet used



Fig. 43. Architecture of ResNeXt used

D. ResNeXt

In ResNeXt, another feature introduced to improve the
performance is ’cardinality’. In simple terms, it is like a
parallel network compared to the series of layers that was seen
in the previous networks. The architecture of implemented
ResNeXt is shown in Fig. 43. Also, the number of parameters
are 29425.

Fig. 44. Architecture of DenseNet used



E. DenseNet

DenseNet implementation is shown in Fig. 44 where the
number of parameters are 2,10,69,804. Now that the descrip-
tion of all the used networks are given, the next step would
be to analyse the results obtained during training and testing.

F. Observations and Inference

For all the networks, the optimizer used was Adam with a
learning rate of 0.001. The kernel and stride in each of the
convolutional layer were the same (3× 3 kernel with stride of
1). To train the models, the number of epochs used were 25.
Furthermore, Cross Entropy loss was used to train the network.
The minibatches used for each of the network was 512, with
an exception for MyNetwork which used 256.

The results of loss and accuracy are shown below for each
of the networks from Fig. 45 to 54, with a downward trend for
loss over time (epochs) and general upward trend of accuracy
over time (epochs).

After these figures, an attempt is made to explain the
performance difference between each of the networks along
with confusion matrices for further clarification.

Fig. 45. Loss observed over Epochs during training of My Network

Fig. 46. Accuracy during training and Testing of My Network

Fig. 47. Loss observed over Epochs during training of My Network - Modified

Fig. 48. Accuracy during training and Testing of My Network - Modified

Fig. 49. Loss observed over Epochs during training of ResNet



Fig. 50. Accuracy during training and Testing of ResNet

Fig. 51. Loss observed over Epochs during training of ResNeXt

Fig. 52. Accuracy during training and Testing of ResNeXt

Fig. 53. Loss observed over Epochs during training of DenseNet

Fig. 54. Accuracy during training and Testing of DenseNet

As far as the losses are concerned, the metric recorded
for the networks during testing can be seen to be similar
over the networks. As far as accuracy is concerned, the
recorded accuracy during testing for ResNeXt, ResNet, and
DenseNet far exceeds the testing accuracy for MyNetwork and
MyNetworkModified.

A conclusion cannot be formed outright with the same as the
testing accuracy is overall similar with all the networks, with
a marginal improvement seen in MyNetwork. This apparent
and counterintuitive trend can be analysed with the help of
other tools such as confusion matrix. The confusion matrices
for all the networks generated during testing can be seen in
the figures below from Fig. 55 to Fig. 59.



Fig. 55. Confusion matrix recorded during Testing of My Network

Fig. 56. Confusion matrix recorded during Testing of My Network - Modified

Fig. 57. Confusion matrix recorded during Testing of ResNet

Fig. 58. Confusion matrix recorded during Testing of ResNeXt

Fig. 59. Confusion matrix recorded during Testing of DenseNet

The label on the x-axis on the confusion matrices represent
predicted labels (of each class as there are 10 classes of
images) and the y-axis represents the true labels. The improve-
ment trend seen in MyNetwork compared to other networks
is easily thwarted by the confusion matrices.

The confusion matrix for MyNetwork show that the network
predicts class 0 most cases and the better accuracy may be due
to the improper distribution of dataset across classes. After
introducing the changes, there was no improvement in the
performance of the modified My Network apart from the faster
training time. Between the two networks, My Network seem
to fare worse in the case of predicting images in class 0-4
along with few more classes.

In the case of ResNet, the misclassifications seem to be
spread out instead of concentration in a single class (but in
all the network, most misclassifications is recorded in class
0 - predicting class 0 but the image belonged to another
class). Finally, in the case of DenseNet and ResNeXt, better
performance is recorded, as it can be seen with increase in
prediction matches with true labels across most classes.

Supported along with the accuracy plots, it would be suffice
to say that ResNeXt fared the best compared to the other
networks. To improve the performance of these networks, the
train set needs to be preprocessed and the distribution across
classes need to be regulated.


