
Implementation of Pb-lite and Comparison of
Network Architectures on CIFAR-10

Yaşar İdikut
Worcester Polytechnic Institute

Worcester, Massachusetts
Email: yidikut@wpi.edu

Using 4 Late Days

Abstract—This introduction project consists of two
independent phases. In phase one, we implement a lighter version
of Pb edge detection algorithm from [1] and compare against
Sobel and Canny baselines. In phase two, we compare between
the following architectures for the CIFAR-10 dataset [2]: simple
CNN-based model, hyperparameter-tuned CNN-based model,
ResNet-based model, ResNeXt-based model, and DenseNet-based
model.

I. INTRODUCTION

The first phase focuses on improving upon the
existing methods for edge detection. A rather recent work
from 2011 [1] on edge detection essentially relies on texture,
color, and brightness discontinuities and assigns each pixel a
probability for being an edge. This project doesn’t implement
the whole algorithm introduced in that work. This project takes
its main ideas from there and implements a lighter version of
it.

The second phase deals with implementing and
comparing different network architectures to be used for the
CIFAR-10 dataset [2]. CIFAR-10 is a dataset of labeled
images where each image belongs to one of ten classes. CNN-
based architectures are generally preferred over simple neural
network layers because CNNs can better consider the spatial
information. All the architectures implemented and compared
here are CNN-based but vary in complexity.

II. PHASE I: PB-LITE EDGE DETECTION

The lighter version of the original Pb algorithm [1]
is implemented as follows. First, I created three types of filter
banks. Filter banks are basically a collection of filters that
can be used to detect texture changes in the image. In total,
I created 32 DoG filters, 96 Leung-Malik filters (48 small
scale, another 48 large scale), and 40 Gabor filters. Then, these
filter are used to create the Texton map, which can be used
as a measure of different textures on the image. After filtering
the image using selected filters, I create a K-means cluster
and assign each pixel an ID that represents its texture. The
brightness maps and the color maps are generated using the
gray scale and colored version of the image, respectively. I
create another K-means cluster and assign each pixel an ID

Figure 1: The image I use to evaluate and compare my
implementation of Pb-lite

Figure 2: Visualization of the Sobel baseline

that represents its brightness and color, respectively. After-
wards, I take gradients of texton, brightness, and color maps
to highlight the edges. A higher gradient would signal that
there is a higher probability that pixel is an edge. This is
intuitive because objects are separated from the background
or other objects by certain discontinuities in the map values.
Finally, these gradient maps are averaged and combined with
the outputs of the baseline Sobel and Canny edge detection
algorithms. The resulting map is the edge probability value
for each pixel.

In this phase, I only use the image in Figure 1

A. Sobel and Canny baselines

B. Evaluation

I wasn’t able to do this.



Figure 3: Visualization of the Canny baseline

III. PHASE II: NETWORK ARCHITECTURES ON CIFAR-10

Here, I present my brief explanations for each net-
work architecture and analyze the results at the end. The
total inference time and number of parameters comparison is
provided in the last subsection.

A. Initial CNN-based Model

The first model is a very simple one. It consists of
two convolution layers and two fully connected layers. For a
detailed view of the network, please see figure 4. The Adam
optimizer is used. I trained this model for 20 epochs with a
minibatch size of 16 and a learning rate of 0.001. The plots
show signs of convergence both on the training and testing
dataset, however, the accuracy and loss are not great. These
can be seen in figures 5 6 7 8. Lastly, confusion matrix for
this model can be seen in figures 9 and 10. As expected, the
model performs better in the training dataset and has higher
errors on the testing dataset.

Figure 4: Initial CNN-based model architecture

Figure 5: Initial CNN-based model training loss

Figure 6: Initial CNN-based model training accuracy



Figure 7: Initial CNN-based model testing loss

Figure 8: Initial CNN-based model testing accuracy

Figure 9: Initial CNN-based model confusion matrix on train-
ing data

Figure 10: Initial CNN-based model confusion matrix on
testing data



B. Hyper-parameter Optimized CNN-based Model

To improve upon the initial model, I used hyperpa-
rameter tuning. I iterated over different minibatch sizes and
learning rates for a small number of epochs. Then, I picked
the combination of parameters with the lowest loss. Finally, I
used a minibatch size of 64 and a learning rate of 0.001. This
time, results got better as can be seen in figures 11 12 13 14.
Lastly, confusion matrix for this model can be seen in figures
15 and 16.

Figure 11: Hyper-parameter optimized CNN-based model
training loss

Figure 12: Hyper-parameter optimized CNN-based model
training accuracy

Figure 13: Hyper-parameter optimized CNN-based model test-
ing loss

Figure 14: Hyper-parameter optimized CNN-based model test-
ing accuracy

Figure 15: Hyper-parameter optimized CNN-based model con-
fusion matrix on training data



Figure 16: Hyper-parameter optimized CNN-based model con-
fusion matrix on testing data

C. ResNet-based Model

The next architecture I experimented with is a
ResNet-based model. This architecture also relies on con-
volution layers, but it is less prone to information getting
lost/vanished as data proceeds through the layers. The reason
is because this architecture is able to directly connect some
non-neighboring layers by simply skipping them. The visual-
ization of the architecture can be seen in 17. Specifically, I
implemented the ResNet-50 architecture and resized images
from 32x32 to 224x224 before supplying them to the model.

The Adam optimizer is used. I trained this model
for 20 epochs with a minibatch size of 128 and a learning
rate of 0.001. The plots show very good signs of convergence
both on the training and testing dataset. These can be seen in
figures 18 19 20 21. Lastly, confusion matrix for this model
can be seen in figures 22 and 23.

Figure 17: ResNet-based model architecture

Figure 18: ResNet-based model training loss

Figure 19: ResNet-based model training accuracy



Figure 20: ResNet-based model testing loss

Figure 21: ResNet-based model testing accuracy

Figure 22: ResNet-based model confusion matrix on training
data

Figure 23: ResNet-based model confusion matrix on testing
data



D. ResNeXt-based Model

The next architecture I experimented with is a
ResNeXt-based model. This architecture builds upon ResNet
and instead of enlarging the network in depth, it prioritizes
growing wide. Layers are grouped into blocks and inputs feed
into the blocks k times. Output from these blocks are aggre-
gated and fed into the next block. This widens the network
while not changing the depth. The benefit of this approach
is again to retain long-term information. I used a cardinality
value (k) of 2, and created 3 blocks. The visualization of the
architecture can be seen in 24. In the figure, I show a detailed
setup of one of the blocks.

Many of the following setup is similar to the ResNet
model. The Adam optimizer is used. I trained this model for
20 epochs with a minibatch size of 128 and a learning rate of
0.001. The plots show very good signs of convergence both on
the training and testing dataset. These can be seen in figures
25 26 27 28. Lastly, confusion matrix for this model can be
seen in figures 29 and 30.

Figure 24: ResNeXt-based model architecture

Figure 25: ResNeXt-based model training loss

Figure 26: ResNeXt-based model training accuracy



Figure 27: ResNeXt-based model testing loss

Figure 28: ResNeXt-based model testing accuracy

Figure 29: ResNeXt-based model confusion matrix on training
data

Figure 30: ResNeXt-based model confusion matrix on testing
data



E. DenseNet-based Model

The next architecture I experimented with is a
DenseNet-based model. In this architecture, each layer in a
dense block are all connected with each other. This is possible
made possible by passing both a previous layer’s input and
output. This way, the next layer, also processes the inputs
from all the previous layers. In between the dense blocks, there
exists a transition layer that ensures that the dimension of the
data is kept to the configured constant value. I implemented a
version of DenseNet-121 that is compatible with our dataset
image size. This model consists of 4 dense blocks and each
block has 6, 12, 24, and 16 layers in order. The visualization
of the architecture can be seen in 31. In the figure, I show a
detailed setup of one of the blocks.

Many of the following setup is similar to the previ-
ous models. The Adam optimizer is used. I trained this model
for 20 epochs with a minibatch size of 128 and a learning
rate of 0.001. The plots show very good signs of convergence
both on the training and testing dataset. These can be seen in
figures 32 33 34 35. Lastly, confusion matrix for this model
can be seen in figures 36 and 37.

Figure 31: DenseNet-based model architecture

Figure 32: DenseNet-based model training loss

Figure 33: DenseNet-based model training accuracy



Figure 34: DenseNet-based model testing loss

Figure 35: DenseNet-based model testing accuracy

Figure 36: DenseNet-based model confusion matrix on train-
ing data

Figure 37: DenseNet-based model confusion matrix on testing
data



F. Comparison of Models

Overall, all three of the complex models with a
rather complex network architecture showed great accuracy
while the initial model, even hyperparameter optimized, gave
only acceptable results. The models with complex architec-
tures perform almost perfectly on the training dataset and still
do a good job in the testing dataset. This signals to me that
there is a need for increased regularization such that the model
performs better on an unseen dataset.

In table I, you can see the number of parameters
used in each model. There were different ways to calculate
the number of parameters in a model. The one recommended
by the assignment page (”Named” parameters) yields much
lower number. This is because each ”named” parameter is
actually a matrix with a lot more trainable parameters. The
number of trainable parameters are calculated by counting
all the trainable parameters in the model object’s parameters
method. In table II, you can see the inference speed of each
model. To make the inference times more realistic, I report the
time it takes to evaluate a batch of inputs rather than evaluating
a single image.

Model Number of ”Named” Number of Trainable
Parameters Parameters

Simple CNN 8 89630
ResNet 144 21298186
ResNeXt 95 9128778
DenseNet 364 6852074

Table I: Number of parameters per model

Model Minibatch (32) Inference Time
Simple CNN 0.0011 seconds
ResNet 0.0104 seconds
ResNeXt 0.01080 seconds
DenseNet 0.0413 seconds

Table II: Minibatch inference time per model.

REFERENCES

[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[2] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.


	Introduction
	Phase I: Pb-lite Edge Detection
	Sobel and Canny baselines
	Evaluation

	Phase II: Network Architectures on CIFAR-10
	Initial CNN-based Model
	Hyper-parameter Optimized CNN-based Model
	ResNet-based Model
	ResNeXt-based Model
	DenseNet-based Model
	Comparison of Models

	References

