
RBE 549 - Computer Vision HW0 - Alohomora
Ashwin Disa

M.S Robotics Engineering
Worcester Polytechnic Institute (WPI)

Worcester, MA 01609
Email: amdisa@wpi.edu

Abstract—For phase 1, We develop a simplified version of
pb (probability of boundary) detection algorithm, which finds
boundaries by examining brightness, color, and texture informa-
tion across multiple scales. It outperforms the classical methods
(Canny and Sobel) by considering texture and color disconti-
nuities. For phase 2, We implemented the ResNet architecture
and trained on the CIFAR-10 dataset. Performance in terms of
accuracy and losses is analysed.

I. PHASE 1: SHAKE MY BOUNDARY

Boundary detection is an important, well-studied computer
vision problem. Clearly it would be nice to have algorithms
which know where one object transitions to another. But
boundary detection from a single image is fundamentally
difficult. Determining boundaries could require object-specific
reasoning, arguably making the task hard. A simple method to
find boundaries is to look for intensity discontinuities in the
image, also known of edges.

We compare against classical edge detection algorithms,
including the Canny and Sobel baselines, look for intensity
discontinuities. The more recent pb (probability of boundary)
boundary detection algorithm significantly outperforms these
classical methods by considering texture and color disconti-
nuities in addition to intensity discontinuities. Qualitatively,
much of this performance jump comes from the ability of
the pb algorithm to suppress false positives that the classical
methods produce in textured regions.

We develop a simplified version of pb, which finds bound-
aries by examining brightness, color, and texture information
across multiple scales (different sizes of objects/image). The
overview of the algorithm is shown in fig. 1.

Fig. 1: Overview of the pb lite pipeline.

A. Filter Banks
The first step of the pb lite boundary detection pipeline

is to filter the image with a set of filter banks. We create
three different sets of filter banks for this purpose. Once we
filter the image with these filters, we’ll generate a texton map
which depicts the texture in the image by clustering the filter
responses. Let us denote each filter as Fi and texton map as
T .

Filtering is at the heart of building the low level features we
are interested in. We will use filtering both to measure texture
properties and to aggregate regional texture and brightness
distributions.

1) Oriented DoG filters: A simple but effective filter bank
is a collection of oriented Derivative of Gaussian (DoG) filters.
These filters are created by convolving a simple Sobel filter
and a Gaussian kernel and then rotating the result. Let ≀ be
the orientations (from 0 to 360◦) and s scales, we should end
up with a total of ≀ × ≀ filters. A sample filter bank of size 2
× 16 with 2 scales and 16 orientations is shown below. We
expect you to read up on how these filter banks are generated
and implement them. is shown in fig. 2.

Fig. 2: Oriented DoG filter bank.

2) Leung-Malik filters: LM filters are a set of multi scale,
multi orientation filter bank with 48 filters. It consists of first
and second order derivatives of Gaussians at 6 orientations
and 3 scales making a total of 36; 8 Laplacian of Gaussian
(LOG) filters; and 4 Gaussians. We consider two versions of
the LM filter bank. In LM Small (LMS), the filters occur at
basic scales σ = 1,

√
2, 2, 2

√
2. The first and second derivative

filters occur at the first three scales with an elongation factor
of 3, i.e. (σx = σ and σy = 3σx). The Gaussians occur at
the four basic scales while the 8 LOG filters occur at σ and
3σ. For LM Large (LML), the filters occur at the basic scales
σ =

√
2, 2, s

√
2, 4.

3) Gabor filters: Gabor Filters are designed based on the
filters in the human visual system. A gabor filter is a gaussian
kernel function modulated by a sinusoidal plane wave.

B. Texton, Brighness, Color Map
Filtering an input image with each element of your filter

bank results in a vector of filter responses centered on each



Fig. 3: Leung-Malik filter bank.

Fig. 4: Gabor filter bank.

pixel. For instance, if the filter bank has N filters, you’ll have
≀ filter responses at each pixel. A distribution of these N-
dimensional filter responses could be thought of as encoding
texture properties. We simplify this representation by replacing
each N-dimensional vector with a discrete texton ID. This is
done by clustering the filter responses at all pixels in the image
in to K textons using KMeans function. Each pixel is then
represented by a one dimensional, discrete cluster ID instead
of a vector of high-dimensional, real-valued filter responses.

The concept of the brightness map is as simple as capturing
the brightness changes in the image. Here, again we cluster the
brightness values using kmeans clustering (grayscale equiva-
lent of the color image) into a chosen number of clusters (16
clusters seems to work well, feel free to experiment). We call
the clustered output as the brightness map B.

The concept of the color map is to capture the color changes
or chrominance content in the image. Here, again we cluster
the color values (you have 3 values per pixel if you have
RGB color channels) using kmeans clustering (feel free to
use alternative color spaces like YCbCr, HSV or Lab) into a
chosen number of clusters (16 clusters seems to work well,
feel free to experiment). We call the clustered output as the
color map C.

C. Texture, Brightness and Color Gradients

To obtain Tg,Bg, Cg we need to compute differences of
values across different shapes and sizes. This can be achieved
very efficiently by the use of Half-disc masks. The half-disc
masks are simply (pairs of) binary images of half-discs. This
is very important because it allows us to compute the X 2

(a) Texton, Brightness, Color Maps for Image 1

(b) Texton, Brightness, Color Maps for Image 2

(c) Texton, Brightness, Color Maps for Image 3

(d) Texton, Brightness, Color Maps for Image 4

(e) Texton, Brightness, Color Maps for Image 5

(f) Texton, Brightness, Color Maps for Image 6

(g) Texton, Brightness, Color Maps for Image 7

(h) Texton, Brightness, Color Maps for Image 8

(i) Texton, Brightness, Color Maps for Image 9

(j) Texton, Brightness, Color Maps for Image 10



(chi-square) distances using a filtering operation, which is
much faster than looping over each pixel neighborhood and
aggregating counts for histograms. Forming these masks is
quite trivial. A sample set of masks (8 orientations, 3 scales)
is shown in fig. 6.

Fig. 6: Half disc masks at different scales and sizes.

Tg,Bg, Cg encode how much the texture, brightness and
color distributions are changing at a pixel. We compute
Tg,Bg, Cg by comparing the distributions in left/right half-disc
pairs (opposing directions of filters at same scale, in fig. 6, the
left/right pairs are shown one after another, these are easy to
create as you have control over the angle) centered at a pixel. If
the distributions are the similar, the gradient should be small.
If the distributions are dissimilar, the gradient should be large.
Because our half-discs span multiple scales and orientations,
we will end up with a series of local gradient measurements
encoding how quickly the texture or brightness distributions
are changing at different scales and angles.

D. Pb-lite Output

The final step is to combine information from the features
with a baseline method (based on Sobel or Canny edge
detection or an average of both) using a simple equation as
shown below

PbEdges =
Tg + Bg + Cg

3
⊙ (w1 ∗ cannyPb+w2 ∗ sobelPb)

(1)
Here, ⊙ is the Hadamard product operator. A simple choice

for w1 and w2 would be 0.5 (they have to sum to 1).

E. Results

It is observed the Canny baseline output gives high number
of false positives whereas Sobel baseline outputs are sup-
pressed. The performance of Pb-lite lies between the too as
can be seen in the comparison images.

(a) Texton, Brightness, Color gradient Maps for Image 1

(b) Texton, Brightness, Color gradient Maps for Image 2

(c) Texton, Brightness, Color gradient Maps for Image 3

(d) Texton, Brightness, Color gradient Maps for Image 4

(e) Texton, Brightness, Color gradient Maps for Image 5

(f) Texton, Brightness, Color Maps for Image 6

(g) Texton, Brightness, Color gradient Maps for Image 7

(h) Texton, Brightness, Color gradient Maps for Image 8

(i) Texton, Brightness, Color gradient Maps for Image 9

(j) Texton, Brightness, Color gradient Maps for Image 10



(a) Canny, Sobel, Pblite outputs for Image 1

(b) Canny, Sobel, Pblite outputs for Image 2

(c) Canny, Sobel, Pblite outputs for Image 3

(d) Canny, Sobel, Pblite outputs for Image 4

(e) Canny, Sobel, Pblite outputs for Image 5

(f) Canny, Sobel, Pblite outputs for Image 6

(g) Canny, Sobel, Pblite outputs for Image 7

(h) Canny, Sobel, Pblite outputs for Image 8

(i) Canny, Sobel, Pblite outputs for Image 9

(j) Canny, Sobel, Pblite outputs for Image 10

Fig. 9: Basic CNN architecture.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

Here, multiple neural network architectures are imple-
mented on the CIFAR-10 dataset and their performance are
analysed using the loss and accuracy by comparing against



each other. The input images from the dataset are of size
(3× 32× 32), and there are 50000 training and 10000 testing
images.

A. Basic Convolutional Neural Network

Fig. 10: Accuracy v/s number of epoch for train and test sets.

Fig. 11: Loss v/s number of epoch for train and test sets.

Fig. 12: Confusion matrix of Test set.

The implemented CNN has a total of 2 convolutional layers
in the network. The activation function for each layer is a

ReLu() activation function. MaxPool2D() function is used
to scale down the feature map after every convolutional layer. 3
fully connected layers are implemented after the convolutional
layers using the Linear() function and the final output of the
third fully connected layer is used to classify the images into
10 classes. The architecture is shown in fig. 9.

The hyperparameters for this architecture are as follows,
SGD (Stochastic Gradient Descent) is the optimizer, the learn-
ing rate used is 1e− 3, the mini-batch size is set to 128 and
number of Epochs are 30.

Fig. 13: ResNet model architecture.



The train and test set accuracy are found out to be very
similar over 30 epochs. Similar with the model accuracy. This
is shown in fig. 11 and fig. 10. And the confusion matrix for
the Test set is shown in fig. 12.

B. ResNet

Fig. 14: Loss v/s number of epoch for train and test sets.

Fig. 15: Accuracy v/s number of epoch for train and test sets.

In ResNet, we add a skip connection from the previous
layer. This ensures the model does not go in the other way if it
does not improve and maintain it’s accuracy. The fundamental
building blocks of ResNet are residual blocks. These blocks
contain a shortcut connection, or a skip connection, that allows
the gradient to flow directly through the network without
passing through too many layers. This helps in mitigating the
vanishing gradient problem and enables the training of very
deep networks.

The shortcut connection adds the original input to the output
of the residual block. If the input and output dimensions
are not the same, a linear projection is applied to match
the dimensions. This identity shortcut connection aids in the
efficient training of deep networks. The model architecture is
shown in fig. 13.

The hyperparameters for this architecture are as follows,
SGD (Stochastic Gradient Descent) is the optimizer, the learn-
ing rate used is 1e− 3, the mini-batch size is set to 128 and
number of Epochs are 30.

The plots for Loss and model accuracy for the train and test
sets are shown in fig. 14 and 15. The final accuracy for the
model in the Test set is about 70%.

After comparing, the Resnet model shows overall better per-
formance than the simple CNN architecture implementation.


