
RBE549 : Homework 0 - Alohomora
Mihir Deshmukh

Worcester Polytechnic Institute
Worcester, MA

Email: mpdeshmukh@wpi.edu

Abstract—This homework consists of two phases- 1) Phase 1:
Shake my boundary, 2) Phase 2: Deep dive on deep learning.
The first phase implements the Pb(probability of boundary) lite
algorithm for boundary detection. It uses multiple filterbanks and
Kmeans for vector quantization of features. The second phase
implements a basic deep learning model as well as 3 well-known
models, namely ResNet, DenseNet, and ResNeXt.

Using one late day.

I. PHASE 1: SHAKE MY BOUNDRY

Classical approaches for edge detection utilize intensity
discontinuities to identify edges. Here, we use the simplified
version of the recent Pb-lite algorithm, which uses texture,
brightness, and intensity maps for boundary detection. This
approach helps texture and color maps to outperform the
classical baselines. Figure 1 shows the overview of the pb-
lite algorithm. The pb-lite algorithm consists of these 4 basic
steps:

• Filtering
• K-Means to get Texton, Brightness, and Color Maps.
• Chi-square distance with Half Disks (Gradients)
• Combine Texton, Color, and Brightness gradients with

Canny and Sobel Outputs.

Fig. 1. Pb-Lite algorithm overview

A. Filter Bank Generation

We use the following three filter banks:
• Oriented Derivative of Gaussian (DoG)
• Leung-Malik Filters
• Gabor Filters
1) Oriented DoG: The oriented Derivative of the Gaussian

filter bank is constructed by convolving the X and Y Sobel
filter with a Gaussian kernel and summing the result. The filter
size was set to 49*49, and the two scales(standard deviation

of the Gaussian) were set to [4, 8]. I have 16 orientations of
each scale. Figure 2 is the visualization of the Oriented DoG
filter bank.

Fig. 2. Oriented DoG Filter Bank

2) Leung-Malik Filters: The LM filters consist of 48 filters.
We have Gaussian, 8 Laplacian of Gaussian(LoG), and 18
first-order Gaussian derivative, and 18 second-order Gaussian
derivative kernels. LM small used these [1,

√
2, 2, 2

√
2] scale,

while the LM large uses [
√
2, 2, 2

√
2, 4]. The filter size was

set to 49*49. Figure 3 is the visualization of the Leung-Malik
Small filter bank.

Fig. 3. Leung-Malik Small Filter Bank

3) Gabor Filters: The Gabor filter bank uses a Gaussian
filter modulated with a sinusoidal plane wave with a total of
40 filters. The sigma were were set to [2, 4, 7, 9, 12]. Figure
4 is the visualization of the Gabor filter bank.



Fig. 4. Gabor Filter Bank

Fig. 5. Images 1-5: Texton Map, Brightness Map, Color Map

B. Texton, Brightness, Color Maps

Figure 5 and Figure 6 illustrate the texton, brightness, and
color maps, respectively, for all the images in the dataset.

1) Texton Map: Now that our filter bank is ready, I con-
volved each image with the filter bank. I have used the

Fig. 6. Images 5-10: Texton Map, Brightness Map, Color Map

Oriented DoG, LM small, and Gabor filters to get the image
features. After getting the filter responses, we have an N-
dimensional (N is the number of filters) feature vector for each
pixel in the image. These feature vectors can be thought of as
containing information pertaining to the image textures. Using
K-Means clustering to aggregate these features, we assign
them to one of the 64 bins. This cluster bin number can be
viewed as the Texton ID for each pixel. F

2) Brightness Map: The brightness map is used to capture
the brightness fluctuations in the image. Here, we first convert
the RGB image to Grayscale and apply K-Means to cluster
the different brightness levels. For brightness maps, we use
K=16.

3) Color Map: Now, to get the colormap, we cluster the
RGB values of the input image and segregate them in 16 bins
using K-Means.



Fig. 7. Images 1-5: Texton Gradients, Brightness Gradients, Color Gradients

C. Texton, Brightness, color Gradients

1) Half-Step disc masks: We generate half-step disc masks
to calculate the gradients of the texture, brightness, and color
map in an efficient manner. These masks are semi-circular
binary masks in 16 orientations and [5, 10, 15] scales. Figure
8 depicts the half-step disc masks.

Fig. 8. Half Step Disk Masks

The gradients depict how the corresponding map distribu-

tion changes at a pixel. We calculate this by using a left-right
pair of half-disk masks of the same scale to filter the map.
We then use the chi-square distance to compute the gradients.
Figure 7 and Figure 9 illustrate the gradients for the texton,
brightness, and color maps, respectively.

Fig. 9. Images 5-10: Texton Gradients, Brightness Gradients, Color Gradients

D. Pb-lite output

The Pb lite output is calculated using the below mentioned
formula. I used w1=0.3 and w2=0.7 to get the PB-lite output.

PbEdges =
(Tg+Bg+Cg)

3 ⊙ (w1 ∗ cannyPb+ w2 ∗ sobelPb)

The values of w1 and w2 can be changed further to
fine-tune the result of the pb-lite algorithm. Figure 10 and 11
showcase the comparison of outputs for the Canny, Sobel,
and Pb-lite outputs.

E. Result Comparison & Discussion

We can see from the comparison the Sobel output is the
most suppressed, while Canny, on the other hand, has a lot
of noise. The Pb-lite output is the most balanced among the
three and is a clearer and more stable output on the boundaries.



Fig. 10. Images 1-5: Canny, Sobel, Pb-lite

Fig. 11. Images 5-10: Canny, Sobel, Pb-lite

It is a good mix between the Canny, which has a lot of false
positives, and Sobel, which has only a few details. Overall, we
can further improve the performance of the Pb-lite by adjusting
the weights w1 & w2 and the Filter Bank as well, depending
on the input images.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this phase of the homework, we train and test various
Neural network architectures for a classification task. Here,
we have used the CIFAR-10 dataset, which consists of 60000,
32×32 RGB images encompassing 10 classes. There are 50000
training images and 10000 test images. In the following
sections, I go over the various models and methodologies I
used for the classification task.

Fig. 12. Simple CNN Model

A. Simple Convolution neural network:

Fig. 13. SimpleCNN: Loss over epochs

First, I used a simple convolutional neural network with 2
convolutional layers with ReLU activation functions for the
given task. The model architecture can be seen in Figure 12.
The model has a total of 62,006 parameters. Below are the
training hyperparameters:
Optimizer: Adam



Learning Rate: 0.001
Batch Size: 64
Epochs: 30

Fig. 14. SimpleCNN: Accuracy over epochs

The input images are scaled between 0 and 1 by dividing
each pixel value by 255. This helped improve the model’s
performance. The training accuracy was 74.8%, and the test
accuracy was 61.9%. The confusion matrix for training and
testing can be seen in Figure 15 and 16.

Fig. 15. SimpleCNN: Train Confusion Matrix

Fig. 16. SimpleCNN: Test Confusion Matrix

From the train and test loss & accuracies in 13 and 14, we
can see the model starts overfitting after 10 epochs as the test
loss stagnates while the training loss is decreasing. To help
alleviate this, we modify the network architecture to try to
improve the model performance.

B. Modified CNN

Fig. 17. Modified CNN Model

Fig. 18. ModifiedCNN: Loss over epochs

To try and improve the model performance I added batch
normalization layers between the convolution layers as well as
added weight decay for regularization so that the model can
generalize better. Figure 17 shows the modified architecture.
The model has 62,050 parameters. Below are the training
hyperparameters:
Optimizer: Adam
Learning Rate: 0.001
Batch Size: 64
Epochs: 30
Weight Decay: 1e-4

The batch normalization layers help prevent internal covari-
ate shifts in deep networks, thus improving performance. This
helped the model perform a little better and converge faster.



Fig. 19. ModifiedCNN: Accuracy over epochs

However, as this network is shallow, only a small benefit was
observed from the introduction of batch normalization. It still
began to over around 5 epochs as seen in the loss and accuracy
graphs Figure 18 and Figure 19.

There can be two solutions to solving this issue. One would
be to augment training data so as to help the model generalize
better and not overfit. Another would be to go for a more
complex model, which can model the training data better.

The training accuracy was 84.7%, and the test accuracy was
64.4%. The confusion matrix for training and testing can be
seen in Figure 20 and 21.

Fig. 20. ModifiedCNN: Train Confusion Matrix

Fig. 21. ModifiedCNN: Test Confusion Matrix

C. ResNet

Fig. 22. View of a Residual blocks in ResNet18

The motivation behind ResNet is that when we train deeper
CNNs, the accuracy seems to decrease, which should not be
the case. To mitigate this, ResNet introduces skip connections,
which help provide identity maps so that the model perfor-
mance doesn’t degrade even if we go deeper even if it doesn’t
improve. Figure 22 depicts the structure of a residual block of
ResNet18.

Fig. 23. ResNet18: Loss over epochs

Following this idea, I implemented the ResNet18 network
according to the paper. It consists of 4 residual layers,
which total 18 convolutional layers. The model has a
total of 11,186,442 parameters. Below are the training
hyperparameters:
Optimizer: SGD
Learning Rate: 0.01
Batch Size: 64



Fig. 24. ResNet18: Accuracy over epochs

Epochs: 30
Weight Decay: 5e-4
Momentum: 0.9

Fig. 25. ResNet: Train Confusion Matrix

Fig. 26. ResNet: Test Confusion Matrix

The training accuracy was 97.27%, and the test accuracy
was 75.67%. The confusion matrix for training and testing
can be seen in Figure 25 and 26.

Though ResNet18 performs better than the basic CNN, it
still starts overfitting after about 6 epochs as seen clearly from
the loss and accuracy plots. One solution, as explained earlier,
could be augmenting the dataset, which will help the model
generalize better. We need to tune the hyperparameters as
well as think about implementing even deeper ResNets like
ResNet50 or ResNet101.

Fig. 27. View of a ResNeXt block

Fig. 28. ResNeXt: Loss over epochs

D. ResNeXt

ResNext uses aggregation of grouped convolutions allowing
more parallel paths in the network. This is controlled by the
cardinality parameters, and here I have used a cardinality of
32. Following this idea, I implemented the ResNeXt network
according to the paper. It consists of 4 resNeXt layers. The
model has a total of 1,803,658 parameters. Below are the
training hyperparameters:
Optimizer: Adam
Learning Rate: 0.01
Batch Size: 64
Epochs: 16
Weight Decay: 1e-4

The training accuracy was 95.5%, and the test accuracy was
81.5%. The confusion matrix for training and testing can be
seen in Figure 30 and 31.



Fig. 29. ResNeXt: Accuracy over epochs

Fig. 30. ResNeXt: Train Confusion Matrix

ResNeXt performs better than ResNet, but we can still see
some overfitting after about 8 epochs, so there is a scope for
improvement by adding more layers as well as adding data
augmentation.

E. DenseNet

DenseNet uses a unique approach for dense connectivity
between layers where each layer receives input from all
preceding layers. This improves information flow and reduces
the vanishing gradient problem. It is more efficient in terms
of parameters than ResNet and focuses on feature map
fusion with its dense connectivity. Following this idea, I
implemented the 40-depth DenseNet network according to
the paper. It consists of 3 dense layers and 2 transition layers.
The model has a total of 5,564,248 parameters. Below are
the training hyperparameters:
Optimizer: SGD
Learning Rate: 0.01
Batch Size: 64
Epochs: 18
Weight Decay: 5e-4
Momentum: 0.9

The training accuracy was 98.8%, and the test accuracy was
87.7%. The confusion matrix for training and testing can be
seen in Figure 35 and 36.

DenseNet performs the best out of all three models, but we
can still see some overfitting after about 10 epochs, so there

Fig. 31. ResNeXt: Test Confusion Matrix

Fig. 32. View of a Dense block in DenseNet

is a scope for improvement by adding data augmentation to
improve performance.



Fig. 33. DenseNet: Loss over epochs

Fig. 34. DenseNet: Accuracy over epochs

Fig. 35. DenseNet: Train Confusion Matrix

Fig. 36. Dense: Test Confusion Matrix


