RBE549 HWO - Alohomora

Amrit Krishna Dayanand
Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts, 01609
Email: adayanand @wpi.edu

I. PHASE 1 - SHAKE MY BOUNDARY
A. Filter Banks

A filter is a basic, discrete computation that can be applied
to an image to change its information, by either reducing
or increasing its dimensionality, and changing the phase and
magnitude of the image data itself. A collection of such filters,
or filter-bank, provides valuable information in the form of
an N-dimensional filter response. Filter-banks can be applied
using convolution or, more generally, the cross-correlation
function:

k k
Zli5) = > Y Klu,olfi+u,j+v] (1)

u=—kv=—%k

In the context of Pb-lite, we are interested in filters that can
provide low-level information about the image, like detecting
changes in texture, brightness and color at different scales and
orientations. This section covers three low-level filter-banks:
oriented Derivative-of-Gaussian, Leung-Malik, and Gabor.

1) Oriented Derivative-of-Gaussian (DoG) Filter Bank:
The derivative of a Gaussian filter forms a simple edge-
detector changing from low to high-intensity across one
image axis. By rotating this filter, intensity change across an
arbitrary axis can be found. Furthermore, applying the filter
across different scales results in finer or coarser filtering.

This filter is implemented by convolving a simple Sobel
kernel, an approximation of the first-derivative, and a
Gaussian kernel. An example of a sobel kernel in the x-axis
is shown below.

-1 0 1
-2 0 2
-1 0 1

A DoG filter bank across 2 scales and 16 scales was
generated to contribute to the Pb-lite output.

2) Leung-Malik Filter Bank: The Leung-Malik filter
bank is a multi-scale, multi-orientation filter bank consisting
of first and second order DoG filters at 6 orientations and
3 scales, 8 Laplacian of Gaussian filters, and 4 Gaussian filters.

DENMME"EEAENNEEEED

Fig. 1. Derivative-of-Gaussian filter bank over scales [I, \/5] and 16
orientations

The DoG filters are elongated along the y-axis. Thus its
filter response would scrutinize edges better than a regular
DoG filter, which has a more circular profile, which would
lead to a fuzzier response. The second order DoG filter
is distinguished by a low intensity strip straddled by high
intensity strips on either side.

The Gaussian filter is a low-pass filter, commonly used for
blurring images. This is useful for smoothing out an input
image before computing derivatives, which would otherwise
amplify noise.

The Laplacian of Gaussian (LoG) filter is commonly used
for multiscale blob detection and contour detection. Since the
Gaussian is a low-pass filter, and the Laplacian is a high-pass
filter, the LoG filter acts as a band-pass filter. An efficient
way to implement this is as the difference of two Gaussian
filters of slightly different scale. In this paper, the difference
in scales occurs at a factor of /2.

A small and large version of the Leung-Malik filter
were implemented. These occur at the basic scales of
o =[1,v2,2,2V/2], and o = [/2,2,2/2, 4], respectively.

3) Gabor Filter Bank: The Gabor filter is inspired by the
human visual system. It is implemented by modulating a
Gaussian kernel by a 2-D sinusoidal wave. This filter is useful
for identifying textures in an image of a particular frequency.
Generating a filter bank across scales approximates a change
in frequency, and applying a rotation to the filter allows multi-
orientation texture detection.

TrTITEI T
INEINEOSENEE
ISENSENSENSE
n[oioloaEsel 111"

s Lo st e
DNENSEDNENSE
INENNEDSEDEE
INERSEISNZIINZ
EEEDEEEEEER

Fig. 3. Leung-Malik "Large” filter bank

Fig. 4. Leung-Malik ”Small” and “Large” filter banks, occurring at the basic
scales o = [1, V2,2, 2\/5], and 0 = [ﬁ, 2,2v/2, 4], respectively. The first
and second-order derivatives occur at the first three scales with an elongation
factor of 3 (0 = 0,0y = 30)

/2 2,12 /
9(x;y; A, 0,9,0,7) = exp (—%723/) cos (2= +)
2)
' = xcosf + ysinf 3)
y' = —zsinf 4 ycos (4)

The Gabor filter is described by the equation above, with
wavelength A, orientation 6, phase offset 1), scale o, and spatial
aspect ratio (squishing in x or y) 7.

B. Texton Map

Filtering a grayscale input image, I, of dimensions mxn,
with NN filters results in an N-dimensional filter response
of size (N, m,n). We can reduce the dimensionality of this
response using K-means clustering (K=64) to quantize the N-
dimensional response into 1 dimension, over the same image

TTTTTT
HEEONODSE
EEZZNNNS
SEZuNNNS
SZZUNNSS

Fig. 5. Derivative-of-Gaussian filter bank over scales [I, \/5] and 16
orientations

dimensions. This process generates a Texton Map, where the
image intensity corresponds to the Texton ID (1...K).

C. Brightness Map

The brightness map is the output of applying K-means
clustering (K=16) to the raw, grayscale input image. This
captures changes in brightness in the image.

D. Color Map

The color map is the output of applying K-means clustering
(K=16) to the color image. This captures changes in color in
the image. In this implementation, the RGB space was used,
but other color spaces can also be used.

E. Computing Map Gradients

The gradient of the texture, brightness and color maps
provides insight into how the image changes spatially in
each of these aspects, which contributes to better accuracy in
detecting textures, edges and salient features in the image.

1) Half-Disk Mask Method: Oriented pairs of half-disks
at different scales are used to efficiently calculate the y?2
distances using filtering.

2 1 s (g — ha)?
x*(g,h) 2; T ®)

The x? is a measure used to compare two histograms, g
and h with the same number of bins, K.

Performing N half-disk mask convolutions over the texton
map, brightness map, and color map, results in the gradient for
each map, denoted Ty, By, and Cy. In this implementation, 8
orientations at 3 scales were used for the half-disk masks as

shown below.

F. Output Images for Ty, By, C,

For each of the ten images, the following were the results
of each map gradient.

ML NAN"wVdLINN=™4dP

Fig. 6. Half-disk masks over 3 scales [2.5, 3.5, 6.5] and 8 orientations

Fig. 7. Ty, By, Cy of Image 1

G. Sobel and Canny Baseline

The Sobel filter is a simple approximation of a discrete,
first-derivative kernel. The Canny filter applies Gaussian
smoothing, sobel filtering and non-max suppression (i.e.,
keeping the strongest gradient magnitude and orientation and
setting the rest to 0).

While it is more computationally expensive than a Sobel
filter, the Canny filter is less susceptible to noise due to the
Gaussian smoothing. The Sobel filter on the other hand will
amplify noise to some extent. The Canny and Sobel baselines
are shown below for each of the ten images.

H. Pb-lite Results

Pb-lite is computed as the combination of the gradient maps
and canny and sobel baselines as follows:

(Ty+ By + Cy

PbEdges = 3

O (wy *canny Pb—+wsq* sobel Pb)

(6)

The output of the Sobel, Canny and Pb-lite computation for
each of the ten images is shown below.

1. Discussion

From the results above, it is evident that Pb-lite is better at
boundary-detection than the Sobel or Canny Baselines due to
additional considerations like texture and color.

The Canny baseline is an improvement over that of the
Sobel because it incorporates smoothing, which reduces
noise like high-frequency, non-boundaries, and non-max
suppression, which focuses on the features with the highest
magnitude.

Fig. 9. Ty, By, Cy of Image 3

However, colors and texture are a rich source of information,
especially in nature. While Canny and Sobel baselines only
consider brightness to detect boundaries, Pb-lite incorporates
multi-scale and multi-orientation filtering across texture, color
and brightness, providing coarse and fine information about
the image. Moreover, since Pb-lite uses a linear combination
of the Sobel and Canny baselines, the information of the two
baselines is augmented with texture, color and brightness
features which improves the accuracy of the probability of
boundary.

II. PHASE II - DEEP DIVE ON DEEP LEARNING

Unlike Phase I, where the focus was on building filters to
extract useful features, the focus in Phase II is to develop
network architectures that are capable of learning feature-
extraction from large-scale data.

A. Simple Convolutional Neural Network

Simple convolutional neural networks (CNN) consist of
layers that convolve the input tensor of Cj;, channels with
Cout filters. By modulating the stride, dilation and padding,
other functions like downsampling the image can be achieved.

My initial implementation was a simple 5-layer network.
The first convolutional layer (5x5, 3-;32) was followed by
two convolutional layers (5x5, 32 -; 32). Each convolutional
layer was followed by a rectified linear unit (ReLU)
activation function. The output of the convolution layers was
downsampled using maxpooling (2x2) followed by two fully
connected layers (size 3200 and 512, respectively). Finally,
softmax was applied to generate a probability distribution. I
applied a learning rate of 0.001 and the AdamW optimizer.

However, this yielded poor results with increasing loss and
poor accuracy over 50 epochs. I increased the learning rate
by a factor of 10, upto a maximum rate of 0.1, but this did
not help improve performance. This suggested two possible
causes. First, that the architecture itself may not be deep
enough. Second, that the downsampling of the already small
32x32 image may be causing the network to lose salient

Fig. 11. Ty, By, Cy of Image 5

features early.

B. Improved CNN

Standardization, or normalization, can help adjust the
dataset such that features contribute more evenly to the
learning process. I first tried improving the network by
standardizing the data between [-1 and 1], but this alone did
not help reduce loss.

Ioffe and Szegedy (2015) showed that adding batch
normalization, when applied to mini-batches, instead of the
whole dataset, can make training more efficient. When batch
normalization is applied after a layer of weights, the output is
normalized about the mean of the layer’s output and within
1 standard deviation of it. In my implementation, I added
batch normalization after each convolution and before the
activation function (5x5 conv -; BN -; ReLU) which led to a
significant performance improvement.

C. ResNet

Residual networks aim to mitigate the vanishing gradients
problem. As a network’s depth increases, the gradient
can sometimes reduce to a value close to zero during
backpropagation causing learning to stagnate. A residual
networks (ResNet) solves this by adding a skip layer”
function that adds the input to the output of a layer (or
generally a block of layers).

I implemented a ResNet architecture with a convolutional
layer (3x3, 8, S=2), maxpooling (3x3, S=2) followed by
three stacks containing a pair of residual blocks, followed by
average pooling and a fully connected layer. Each stack had
feature-map sizes of 8, 16, and 32, respectively. Each residual
block contains two convolutional layers as shown in the figure
above followed by an identity skip. When the size of the
layer changes, the identity is a 1x1 convolution that acts as a
function that maps the input to the size of the output channels.

Fig. 13. Ty, By, Cy of Image 7

This yielded a validation accuracy of approximately 68%. I
expected this accuracy to be higher, but this is likely because
the network was not deep enough at the fully connected layer.
I added another fully connected layer which improved the
accuracy to 71.88%

D. ResNeXt

Aggregated Residual Networks (ResNeXt) operates
similarly to ResNet but instead of direct convolutions, there is
an array of parallel (group) convolutions inside each ResNeXt
block. This multi-branch structure introduces the group size,
also known as cardinality, as a tunable hyperparameter.
The authors demonstrate that increasing cardinality is more
effective than creating a deeper or wider network, which has
important implications for the number of total parameters of
the model. In terms of implementation, the concatenation step
can be replaced by a group convolution where the number of
groups is the cardinality.

ResNeXt is particularly powerful because it increases the
density of the network without adding depth. This implies
fewer model parameters, but more number of operations to
compute the larger group convolution per block.

E. DenseNet

The philosophy behind DenseNet is to connect the output
of each DenseNet block to the input of every subsequent
block in a feed-forward fashion, along with the output of
each block. This architecture propagates features throughout
the network, leading to short connections between the input
image and each layer of the network. This increases the
model’s density without increasing the number of parameters.

Fig. 21. Sobel, Canny, and Pb-lite output of Image 5

Fig. 22. Sobel, Canny, and Pb-lite output of Image 6

Fig. 23. Sobel, Canny, and Pb-lite output of Image 7

Fig. 16. Ty, By, Cg4 of Image 10

Fig. 17. Sobel, Canny, and Pb-lite output of Image 1

Fig. 18. Sobel, Canny, and Pb-lite output of Image 2

Fig. 19. Sobel, Canny, and Pb-lite output of Image 3

Fig. 20. Sobel, Canny, and Pb-lite output of Image 4

Fig. 24. Sobel, Canny, and Pb-lite output of Image 8

Fig. 25. Sobel, Canny, and Pb-lite output of Image 9

Fig. 26. Sobel, Canny, and Pb-lite output of Image 10

Cross Entropy Loss over Epochs

2.4
v 2.3 |
)
2.2 4 —— Train Loss
\} Validation Loss
T T T T T T
0 10 20 30 40 50
Epochs
Accuracy over Epochs
30 - —— Train Accuracy
. Validation Accuracy
(%]
C 204
=1
b=
é
2 104
04
T . T T . T
0 10 20 30 40 50
Epochs
Fig. 27. Performance of the 5-layer simple CNN
Cross Entropy Loss over Epochs
2.40 4
0 2.35 -
5
2.30
2.25 A
: T T T T
0 10 20 30 40 50
Epochs
Accuracy over Epochs
20
-3
(%]
® 154
=
g
< 104
®
54
T T T T T
] 10 20 30 40 50
Epochs
Fig. 28. 5-layer CNN with only Data Standardization
Cross Entropy Loss over Epochs
—— Train Loss
1.8 Val Loss
¥ 1.7
g
167 M\
1.5 1
T T T T T T
0 10 20 30 a0 50
Epochs
Accuracy over Epochs
\ VA4
90 - \ AnaMY
z A
m
5 80
J
2 70 A ;
d —— Train Accuracy
60 4 Val Accuracy
T T T T T T
0 10 20 30 40 50
Epochs

Fig. 29. 5-layer CNN with Batch Normalization and Data Standardization

Y

weight layer

relu
Y X

weight layer

identity

Fig. 30. Basic building block of ResNet

Cross Entropy Loss over Epochs

224 —— Train Loss
Val Loss
\
v 2.0 4 \ \
3 /\/\\/\/\/
1.8 4
T T T
0 10 20 30 40 50
Epochs
Accuracy over Epochs
80
> 604 WM/
o ‘ /
v}] ‘
< a0+ / .
L —— Train Accuracy
/\/ Val Accuracy
201 T T
0 10 20 30 40 50
Epochs
Fig. 31. Performance of ResNet with 1-fc layer
Cross Entropy Loss over Epochs
524 A\ — Train Loss
Val Loss
220
g2
N\-/\‘N
1.8 \
T T T T T T
0 10 20 30 40 50
Epochs
Accuracy over Epochs
> 601 W /_/\/ AN
[8)
e
=]
w
£ 40+
S —— Train Accuracy
Val Accuracy
20
T T T T T T
0 10 20 30 40 50
Epochs
Fig. 32. Performance of ResNet with 2-fc layer

256-din

¥

256, 1x1,4 256, 1x1,4 |, 35| 256, 1x1,4
* * paths +*
4.3x3.4 4,3x3, 4 e 4,3x3,4
* k2 -

4, 1x1, 256 4, 1x1, 256 4, 1x1, 256
+
+

256-d out

Fig. 33. ResNeXt basic building block

