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I. PHASE 1: SHAKE MY BOUNDARY

This section contains the methodology and results of using
a simplified Probablity of Boundary(Pb-lite) to detect bound-
aries of images.

A. Filter Generation

The following filters were used to detect characteristics of
the image:

1) Oriented Derivative of Gaussians:

Fig. 1: DoG Filters

2) Leung-Malik Filters:

Fig. 2: LM Large

Fig. 3: LM Small

3) Gabor Filters:

Fig. 4: LM Large

B. Calculating Texton, Brightness, Color Maps

All the images are subsequently run through all of these
filters to extract features. The resultant data is of the shape
num filters× width× height. K-means clustering is used
to reduce the N-dimensional vector filter response at each pixel
to a binned value. Here, I used 32 bins.
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Fig. 5: Maps for the 2st Image
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Fig. 6: Maps for the 3st Image
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Fig. 7: Maps for the 4st Image
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Fig. 8: Maps for the 5st Image
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Fig. 9: Maps for the 6st Image
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Fig. 10: Maps for the 7st Image
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Fig. 11: Maps for the 8st Image
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Fig. 12: Maps for the 9st Image
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Fig. 13: Maps for the 10st Image

C. Calculating Gradients

The 3 gradient maps: Color, Brightness, and Texture are
obtained by calculating χ2 distances using half-disk masks.
The masks are generated using simple math and Numpy
logical AND.

Fig. 14: Half Circle Masks
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Fig. 15: Maps for the 1st Image

The Resulting gradients are as follows
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Fig. 16: Maps for the 2st Image
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Fig. 17: Maps for the 3st Image
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Fig. 18: Maps for the 4st Image
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Fig. 19: Maps for the 5st Image
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Fig. 20: Maps for the 6st Image
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Fig. 21: Maps for the 7st Image

(a) Texton
Gradient

(b) Brightness
Gradient

(c) Color Gradient

Fig. 22: Maps for the 8st Image
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Fig. 23: Maps for the 9st Image
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Fig. 24: Maps for the 10st Image

D. Results

The following are the image results compared to Sobel and
Canny.

(a) Sobel (b) Canny (c) Pblite

Fig. 25: 1st Image

(a) Sobel (b) Canny (c) Pblite

Fig. 26: 2nd Image
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Fig. 27: 3rd Image
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Fig. 28: 4rth Image

(a) Sobel (b) Canny (c) Pblite

Fig. 29: 5th Image
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Fig. 30: 6th Image
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Fig. 31: 7th Image
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Fig. 32: 8th Image
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Fig. 33: 9th Image

(a) Sobel (b) Canny (c) Pblite

Fig. 34: 10th Image

E. Conclusion

For any given image, the resultant edge detection with pb-
lite is far less noisy.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

A. 3.3 First Neural Network

The first attempt I made after researching consists of 3
blocks of 2d Convolution layers separated by a transitional
block. The NN is then terminated with a fully-connected
Linear network that classifies the image into 10 labels. The
network diagram is as follows.

Parameters 33
Optimizer SGD(lr=0.01)
Batch Size 256

Num Epochs 10

TABLE I: Specific Details



Fig. 35: Basic Neural Network

The Loss and Accuracy curves while training are as follows:

Fig. 36: CNN Accuracy Curve

Fig. 37: CNN Loss/iteration Curve

I was able to obtain 80.03% accuracy on the testing data
with this model. The confusion matrix for training and test
cases are as follows:

Fig. 38: CNN - Confusion on Training Data



Fig. 39: CNN - Confusion on Testing Data

B. 3.4 Improving First Neural Network

The training process was improved via adding augmentation
of the images before training. With these augmentations,
there is no improvement in accuracy which stays at 79.9%.
I can only conclude that the neural network understands the
characteristics of the training data. The following steps were
taken:

1) Randomly cropping after adding a padding of 4 on all
sides

2) Randomly Flipping the Image
3) Normalizing the image

The following are the results of the experiment

Fig. 40: CNN Accuracy Curve

Fig. 41: CNN Loss/iteration Curve

Fig. 42: CNN - Confusion on Training Data

Fig. 43: CNN - Confusion on Testing Data

C. 3.5 Other Architectures

1) ResNet: The ResNET architecture was developed as a
response to the issue of vanishing gradient. When a NN is
deep enough, the calculated gradients used to adjust/optimize
it become miniscule and training further leads to no accuracy
improvements. ResNet thus introduces a connection between
from the start of the block to the end without any computation
so that the some of the features of initial layers reach later



layers. Accuracy Obtained on Testing Data is 82.31 %, A
minor improvement over CNN.

Parameters 218
Optimizer SGD(lr=0.01, weight decay=0.001, momentum=0.9)
Batch Size 128

Num Epochs 15

TABLE II: Specific Details

The following are the results of the experiment

Fig. 44: ResNet Accuracy Curve

Fig. 45: ResNet Loss/iteration Curve

Fig. 46: ResNet - Confusion on Training Data

Fig. 47: ResNet - Confusion on Testing Data

2) ResNext: ResNext is a further evolved form of ResNet.
Here instead of just sequentially appending layers, layers are
stacked parallel as well. The number of stacked layers is
defined by a new parameter: Cardinality.

With this approach, I was able to get 72.99 % accuracy on
testing data

Parameters 188
Optimizer SGD(lr=0.001, weight decay=0.001, momentum=0.9)
Batch Size 32

Num Epochs 10

TABLE III: Specific Details

The following are the results of the experiment

Fig. 48: ResNext Accuracy Curve



Fig. 49: ResNext Loss/iteration Curve

Fig. 50: ResNext - Confusion on Training Data

Fig. 51: ResNext - Confusion on Testing Data

3) DenseNet: Densenet is a further improvement in flow
of information from previous layers. In this network design, a
layer has access to all the feature extractions of all previous
layers, hence the name dense referring to a lot of inter-layer
connection

With this approach, I was able to get 83.87 % accuracy on
testing data. Furthermore, densenet trained much quicker than
resnext.

Parameters 596
Optimizer SGD(lr=0.1, momentum=0.9)
Batch Size 64

Num Epochs 10

TABLE IV: Specific Details

The following are the results of the experiment

Fig. 52: DenseNet Accuracy Curve

Fig. 53: DenseNet Loss/iteration Curve

Fig. 54: DenseNet - Confusion on Training Data



Fig. 55: DenseNet - Confusion on Testing Data

D. Analysis

Augmentation did not have as much impact as I expected.
This is probably due to the high initial scoring of the initial
CNN. Densenet trains much faster and considering that accu-
racy of all methods lie within 10% of each other, DenseNet
leads the way in terms of practical utility.

CNN AugCNN Resnet ResNext DenseNet
Parameters 33 33 218 188 596
Test Acc 80.03 79.9 82.31 72.99 83.87
Train Acc 100 100 98.406 90.24 94.198
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