
HW0: Alohomora
Blake Bruell

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

babruell@wpi.edu

Abstract—In this paper pb-lite edge detection algorithm is
implemented during Phase 1. The math behind the derivative of
Gaussian filters is discussed, and the method of creating a texton
gradient is explained. In Phase 2 image classification networks
are explored.

I. INTRODUCTION

This paper is divided into two parts: Phase 1 and Phase
2. During Phase 1 the pb-lite edge detection algorithm is
implemented. The implementation of pb-lite includes the
derivation of different filter banks, and the creation of texton,
brightness and color gradient maps. Finally, the method of
combination is explained, as well as the key insights about
the algorithm. During Phase 2 a simple model for image
classification is created and trained, and some aspects of the
model and training as discussed.

II. PHASE 1: PB-LITE

Edge detection is a very common and widespread problem
in computer vision, and of fundamental importance to the field.
An edge detection algorithm’s goal is to find discontinuities
in an image, or edges. What exactly an edge is hard to define,
with answers even varying between humans, and as such the
problem is considered very challenging.

One of the simplest techniques for performing edge detec-
tion is the Sobel kernel. The horizontal and vertical Sobel
kernels are the following:

Sh =

−1 0 1
−2 0 2
−1 0 1

Sv =

−1 −2 −1
0 0 0
1 2 1


and are applied to the intensity map of an image, A, to find
the gradient magnitude at each pixel, G:

G =
√

(Sh∗A)2 + (Sv∗A)2

where S∗A is the convolution of A by the kernel S. G gives
an idea of the edges in an image, but obviously only takes
into account the changes in intensity in the image. Canny is a
similar algorithm, but it takes into account the magnitude of
the gradients of the nearby pixels. Canny obviously also suffers
from the same shortcoming of only considering intensity.

The pb-lite algorithm is an attempt to address this shortcom-
ing by also considering the texture of an image as well. This
is accomplished by clustering pixels in an image (using an
algorithm such as K-means) according some some feature set,
and then considering the gradients of these clusters. Specially,
pb-lite uses three feature sets: brightness (1 feature), color (3

Fig. 1: Overview of pb-lite pipeline.

features), and texture (number of features equal to the number
of filters). These gradients are then combined with the Sobel
and Canny edge detection algorithms according the pipeline
shown in Fig. 1.

Much of this section will be discussing the last feature set,
the texture. As previously hinted at, this feature set is defined
by a set of filters, or a filters bank. There are many possibilities
for the filter bank, and some of those possibilities are discussed
in the following section.

A. Filter Banks

Each of the following filter banks is based on the 2-d
Gaussian filter [1]:

Gσ,µ(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
Note that in this paper when filter banks are visualized, 0 is
represented by gray, white is more positive, and black is more
negative.

1) Oriented Derivative of Gaussian: This filter bank is
defined by looking at the derivative of the Gaussian filter
across a set of orientations. The derivative of the Gaussian
in the x direction is equal to − x

σ2Gσ(x, y) [1]. This can
the be rotated to an arbitrary angle, taking advantage of
the Gaussian’s circular symmetry to produce an arbitrary
orientation, a trick that will be used repeatedly in the following
sections. An example bank is as follows:



Fig. 2: Oriented DoG filter bank at 7 and 15 px sizes, and 16
orientations

2) Leung-Malik Filters: Leung-Malik filters are a combi-
nation of four different kinds of Gaussian filters: oriented
first and second derivatives, Laplacian of Gaussian (LoG), and
a normal Gaussian distribution. The function for the second
order derivative of the Gaussian in the x direction is given by
[1] (again other orientations can be found by simply rotating
the result):

G′′
σ(x, y) =

(
x2

σ4
− 1

σ2

)
Gσ(x, y)

and finally the Laplacian is given by [1]:

∇2Gσ(x, y) =

(
x2 + y2

σ4
− 2

σ2

)
Gσ(x, y)

Leung-Malik contains the following filters: first and second
order derivatives of Gaussians at 6 orientations and 3 scales,
8 scales of LoG, and 4 normal Gaussians.

Fig. 3: Set of Leung-Malik filters

3) Gabor Filters: The last type of filter that is considered
is the Gabor filter. Gabor filters are simply the Gaussian filter
modulated by a sinusoidal plane wave (again, simply rotate
result to get different orientations):

Gbσ(x, y) = sin(x)Gσ(x, y)

Fig. 4: Set of Gabor filters at 5 scales and 8 orientations

B. Texton Map and Gradient

Now that we have some candidate filter banks, lets consider
the texton map of an image. For the following sections Fig. 5
will be used as the input image.

Fig. 5: Penguin image used as an input

The first step of calculating the texton map is converting
the image (N × M × 3) to a brightness map (B : N × M ),
simply done by converting the image to grayscale. Then each
filter in a filter bank (F filters) is convolved with B resulting
in a texton map T of dimension N × M × F . At this point
we have the texton of the image, which is visualized using the
mean across the F dimension in Fig. 6

Fig. 6: Mean of texton map

This map is then clustered using KMeans into K = 64
clusters (N×M×F → N×M ), reducing the high dimensional
filter data to 1 dimension. This yields a single channel image
in which each pixel has a value between 1, 2, . . . ,K, shown
in Fig. 7 using a jet color map, and this is the texton map T

The final step of this process is to take a pair of half-disk
masks to compute the gradient of each pixel using the chi-
squared metric between the two halfs for each given cluster.
This is performed for a whole bank of half-disk pairs (Fig.
8), and averaged. This yields Tg which has dimensions N ×
M ×K, which must finally be condensed to N ×M . This is
achieved by simply taking the mean across the K dimension.
The output of this process for Fig. 7 is shown in Fig. 9.

C. Brightness and Color Gradients

The exact same process as discussed for the texton Graident
is performed on two other feature sets, color (N×M×3) and



Fig. 7: Texton Map T

Fig. 8: Half-disk Masks

Fig. 9: Texton map gradient Tg

brightness (N ×M ), but with K = 16. The results are shown
in Fig. 10.

D. Putting It All Together

The final pb-lite output is defined by taking the mean of the
gradients, a weighted average of the Canny and Sobel base-
lines, and performing piece-wise multiplication, as follows:

PbEdges =
Tg + Cg + Bg

3
⊙ (w1 ∗ cannyPb+w2 ∗ sobelPb)

The mean of the gradients, the Canny and Sobel baselines,
and the final pb-lite result are shown in Fig. 11.

To understand the advantage of pblite, consider the example
input image. The Canny baseline has too much detail, and
the Sobel too little. This, as previously mentioned, is a result
of the fact that these algorithms only consider brightness

(a) Brightness Map B (b) Brightness Gradient Bg

(c) Color Map C (d) Color Gradient Cg

Fig. 10: Gradients for color and brightness

(a) Canny baseline (b) Sobel baseline (c) Gradients Mean

(d) Final pb-lite result

Fig. 11: Final step of pb-lite pipeline

gradients, and not texture and texture gradients. Pblite directly
addresses this by calculating the three gradients of clusters
(texton, color, and brightness) and including these in the final
result. By looking at the gradients of the clusters instead of the
texton/brightness/color directly, pb-lite is considering regions
of similar texture, and changes across these regions. As can
be seen by looking at the equation for PbEdges the textural
aspects of the image modify the brightness by weighting the
results of the Sobel and Canny baselines, not adding new
edges.



E. Results for 10 Example Images

Fig. 12: Image 1 and pblite result

Fig. 13: Image 2 and pblite result

Fig. 14: Image 3 and pblite result

Fig. 15: Image 4 and pblite result

Fig. 16: Image 5 and pblite result

Fig. 17: Image 6 and pblite result

Fig. 18: Image 7 and pblite result

Fig. 19: Image 8 and pblite result

Fig. 20: Image 9 and pblite result

Fig. 21: Image 10 and pblite result



III. PHASE 2: IMAGE CLASSIFICATION

In this section of the paper a set of neural networks are
implemented and tested on the CIFAR10 dataset.

A. Baseline Model

A baseline model of 10 parameters was tested, with a
simple model of convolution, relu, pool, convolution, relu,
pool, flatten, and two final relu layers (Fig. 22). The loss per
epoch is shown in Fig. 23, and training accuracy per epoch is
shown in Fig. 24.

Fig. 22: Model Architecture

AdamW was chosen as the optimizer, with a learning rate
of .001, weight decay of 0, epsilon of 1× 10−8, beta 1 of .9
and beta 2 of .999. Mini-batches of size 100 were chosen to
strike a balance between speed of training and accuracy.

Fig. 23: Loss Per Epoch

Fig. 24: Training Accuracy Per Epoch

IV. CONCLUSION

In Phase 1 pb-lite was successfully implemented, and its ad-
vantages over Canny and Sobel were explored and explained.
The image classification networks in Phase 2 were not fully
implemented or tested, but a baseline model was created and
trained. The next steps for this paper would be to explore more
sophisticated models, such as ResNet, or ResNetX.

REFERENCES

[1] J. Maucher. “Gaussian filter and derivatives of gaussian.”
(Jan. 2021), [Online]. Available: https : / / hannibunny .
github. io /orbook /preprocessing /04gaussianDerivatives .
html.


