
multirow



Homework 0 - Alohomara
Krunal M. Bhatt

Masters of Science in Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA - 01609
Email: kmbhatt@wpi.edu

Using 1 Late Day

Abstract—This document presents the two phases of homework
0 for the course RBE 549: Computer Vision. Phase 1 is focused on
detecting edges by implementing the pb (probability of boundary)
algorithm with the help of some basic texture, brightness,
and color information in combination with Canny and Sobel
baselines. Phase 2 is focused on a deep-learning approach for
image classification on the CIFAR-10 dataset.

I. PHASE 1: SHAKE MY BOUNDARY

This section focuses on the development of a simplified
version of pb, which finds boundaries by examining brightness,
color, and texture information across multiple scales (different
sizes of objects/images). The pipeline for the same can be
observed in the image below in Fig. 1. Traditional Approaches
to solving this problem are Canny and Sobel Edge Detectors.
In a grayscale image, Sobel computes the intensity across
neighboring pixels while Canny detects the edge by checking
the similarity between the gradients at that pixel and the
neighboring pixel.

Fig. 1. Overview of pb lite pipeline

Both algorithms take into account the change in the intensity
of a pixel. The algorithm is implemented through these steps:

1) Apply filter on input image resulting in obtaining texture
2) Quantizing low-level attributes like Texture, Color, and

Brightness
3) Finding the gradients of these attributes for each pixel
4) Combining the result with baseline Canny and Sobel

results

Here we use three filter banks namely: Oriented DoG filters,
Leung-Malik Filters, and Gabor Filters. We will describe them
in brief with their technical details below:

A. The Oriented Derivative of Gaussian (DoG) :

DoG is an image filter utilized in computer vision and
image processing to accentuate image features along particular
orientations while suppressing noise and irrelevant details.
It is constructed by convolving a Gaussian kernel with a
Sobel kernel oriented along a specific direction. The resulting
filter response emphasizes edges and features aligned with the
specified orientation, making it valuable for tasks such as edge
detection, texture analysis, and object recognition in images.
Fig. 2 shows the same.

Fig. 2. Orienrted Derivative of Gaussian(DoG) filter

The filter is generated by using 2 different scale values 16
orientations from 0 deg to 360 deg, therefore getting a filter
bank of 2 X 16 filters.

B. The Leung −Malik F ilters (LMF ) :

It is a set of image filters designed to capture a wide range
of image features, including edges, textures, and other visual
patterns. The Leung-Malik filters, also known as LM filters,
comprise a collection of 48 filters that are multi-scale and
multi-orientation. This filter bank includes 36 filters derived
from first and second-order derivatives of Gaussians at 6
orientations and 3 scales, along with 8 Laplacian of Gaussian
(LOG) filters and 4 Gaussian filters. There are two versions of
the LM filter bank, with the LM Small (LMS) version featuring
filters at fundamental scales such as σ = {1,

√
(2), 2, 2

√
(2)}.

Derivatives occur at the first three scales with an elongation
factor of 3, i.e. (σx = σ and σy = 3σx). In the LM
Large (LML), the filters occur at the basic scales such as
σ = {

√
(2), 2, 2

√
(2), 4}. Fig. 3 shows LMS and Fig. 4 shows

the LML filter bank.



Fig. 3. LMS filter bank

Fig. 4. LML filter bank

C. The GaborF ilters :

The Gabor filters are kernels that have been made by
modulating the Gaussian kernel with a sinusoidal plane kernel.
This is a filter that analyses if there is any specific frequency
content in a particular direction in the image. The filter bank
includes Gabor filters with varying standard deviations for the
Gaussian component and different frequencies for the sinu-
soidal components. These filters are then rotated to produce a
range of orientations. Gabor filters with 3 different standard
deviation values and a sinusoid frequency were implemented
in Fig. 5.

Fig. 5. Gabor filter bank

Now, we saw three tools to extract the low-level information
and use it to make filter banks. Further, we will see some
representations of the filtered outputs presented differently. We
will look at three core representations for this below:

D. Texton Map (T ):

When the image is filtered we make the filter bank and stack
it up with the size of images m X n XN , where the image is

Fig. 6. Texton Maps for the set of test images

m X n size and N is the number of filters used. Hence, we can
now represent each pixel as a distribution of these N values.
Each distribution can be represented with a unique Texton
ID. Different distributions are then clustered using K-means
clustering into K textons. As a result, an image is generated,
shown in Fig. 6, capturing the texture changes in the original
image.

E. Brightness Map (B):
The brightness map’s concept is to identify brightness

fluctuations (intensity variations) within the image. Once more,
we arrange the brightness values (corresponding to the color
image’s grayscale representation) into a predetermined number
of clusters (K = 16) using k-means clustering. The output can
be seen in Fig. 7:

F. Color Map(C):
Color maps represent the change in the chrominance(color)

in the image. The same approach is employed using K-



Fig. 7. Brightness Maps for the set of test images

Means to cluster the color values. Fig. 8 shows the color map
representation for the set of test images provided.

G. Gradient Maps(Tg, Bg, Cg):
Another step into the process, we calculate the gradients

of the above texture, color, and brightness measures. We do
it by implementing the Half-Disc masks. These masks are
just a pair of binary images of half-discs. This way we can
calculate the X 2 distances for calculating the textures using a
filtering operation. This is much faster than looping over each
pixel and averaging the histograms. A sample set of masks (8
orientations and 3 scales) is shown in Fig. 9.

Tg, Bg, Cg represent how much texture, brightness, and color
distributions are changing at a pixel. We compute them by
comparing the distributions in left/right half-disc pairs, which
are straightforward to generate since you have control over the
angle, and are centered at a pixel. The gradient ought to be
modest if the distributions are similar. The gradient ought to

Fig. 8. Color Maps for the set of test images

Fig. 9. Half disc masks



be substantial if the distributions are not identical. Our half-
discs cover several orientations and scales, thus in the end we
will have a set of local gradient measurements that encode the
rate at which the texture or brightness distributions change at
various angles and scales.

X 2 on the other hand is a frequently used metric for
the comparison between two histograms. It is calculated as
follows:

X 2(g, h) = 1
2

∑K
i=1

(gi−hi)
2

gi+hi

here, K = index through bins. The numerator is the sum
of the squared difference between histogram elements. The
denominator adds a normalization to each bin so that less
frequent elements also have a meaningful impact. Fig. 10
shows the Tg, Bg, Cg respectively.

H. Color Map(C):
Color maps represent the change in the chrominance(color)

in the image. The same approach is employed using K-
Means to cluster the color values. Fig. 8 shows the color map
representation for the set of test images provided.

I. PBLite:

In the end, we refer to the pipeline in Fig. 1 and see that we
combine these gradient maps generated with the Canny and
Sobel baselines. Let us first see the Canny and Sobel baseline
images that are being combined with the gradient maps shown
in Fig. 10. The Fig. 11 we see Canny baseline images and in
Fig. 12 we see Sobel baselines.

We then use these baselines and an equation to combine
and find the probability of the boundary. The following
equation is used:

PbEdges =
Tg,Bg,Cg

3 ⊙ (w1 ∗ cannyPb + w2 ∗ sobelPb)

J. Discussion and Conclusion: Phase 1

Working with the equation above and the weights of Canny
and Sobel baselines, there were significant changes in the
output pb lite image. The Fig. 13 represents the output for all
the 10 test set images. Reading about the compared baselines,
it was evident that Canny’s baseline also includes weaker un-
wanted edges as can be seen in Fig. 11. This happens due to the
averaging operation being performed when the Canny edges
are calculated. Similarly, When considering the compared
baselines, it becomes apparent that the Sobel operator, similar
to Canny’s baseline, may produce weaker edges. This can be
observed in Fig. 12. The presence of these weaker edges can
be attributed to the Sobel operator’s reliance on gradient-based
edge detection, which may result in susceptibility to noise
or variations in intensity resulting in faulty edge detection.
For PbLite, when the edges are calculated, the weights are
distributed between Canny and Sobel. This results in several
outputs with good and bad outputs respectively. The output
shown in Fig. 13 has equally distributed weight between the
two baselines that are mentioned in the pipeline. Also, the sum
of these weights adds up to 1. Pb Lite, hence, is beneficial Fig. 10. Tg , Bg , Cg for the set of test images respectively



Fig. 11. Canny Baselines

because it can be modified by varying the orientations and
scales of the filter banks used as well as the weights of the
baselines.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

This section aims to implement multiple neural network
architectures and compare them on various criteria like the
number of parameters, training, and test set accuracies and
provide an analysis of why one architecture works better than
another.

A. Dataset:

A random version of the CIFAR-10 dataset has been pro-
vided with 50,000 train images and 10,000 test images. The
original dataset has 10,000 photos in a test batch, the dataset
is split into five training batches and one test batch. There are
precisely 1000 randomly chosen photos from each class in the
test batch. The remaining photographs are divided into training

Fig. 12. Sobel Baselines

batches and are arranged randomly; however, certain training
batches may have more images from a particular class than
others. The training batches have exactly 5000 photos from
each class combined. The Fig. 14 represents the classes and
images of the dataset.

For the scope of this project, we will be using the random
version of the dataset since we aim to understand and imple-
ment various architectures and learn about them in the Pytorch
Environment.

B. Training First Neural Network:

This is a simple PyTorch Implementation for the task of
image classification. The input for this network is a single
image and the output is probabilities of 10 classes. Here we
learn about optimizer, loss function, and a PyTorch Neural
Network Architecture and we also do some evaluation around
it.



Fig. 13. Pb Lite output

Fig. 14. Dataset

Fig. 15. Train Accuracy over Epochs

Fig. 16. Test Accuracy over Epochs

1) Model and its loss function:: Determining the model
architecture, and loss function, are basic steps in the CIFAR10
Model training process in PyTorch. The model consists of
”conv1” and ”conv2” convolution layers with 16 and 32 output
channels respectively. They use a ReLU activation function. In
the network, there are ”fc1” and ”fc2” layers which are fully
connected layers with 64 output features. These layers also
utilize the ReLU activation function. A forward method defines
the flow of data through the network including the application
of these layers with their respective activation functions. Here
we use a Cross-Entropy Loss function which is commonly
used for multi-class classification tasks.

CrossEntropyLoss = − 1

N

N∑
i=1

(yi log(pi) + (1− yi) log(1− pi))

(1)
where: - N is the number of samples, yi is the true label

for sample i, pi is the predicted probability for sample i. We
now present the figures for the simple first neural network.

C. Improving the Accuracy:

We first standardize the dataset within the interval [-1, 1].
Then, we can employ data augmentation methods, such as
random noise addition and random rotation of the left and right
images. To make sure that the input distribution of every layer



Fig. 17. Loss over Epochs

Number of Parameters 136,874
Optimizer Adam

Hyp. Params Lr = 0.001
Batch Size 32

Epochs 20
TABLE I

FIRST SIMPLE NEURAL NETWORK

stays roughly the same after each training stage, we also added
the batch normalization layers after each convolution layer.
As seen in Fig. 20, this helps avoid the internal covariance
shift issue and shortens training time. Figs. 21, 22, 23, and 24
display the model statistics.

D. Residual Neural Network (ResNet):

A neural network architecture known as a residual network,
or ResNet, finds the most straightforward solution to the issue
of vanishing gradients. That is, as illustrated in Fig. 25, by
implementing skip connections in a general residual block.
As a result, the network may support deep layers without
experiencing the vanishing gradient issue. Figs. 26 and 27
show the training and test set accuracy versus epochs for this
network, which was only trained for 25 epochs. Fig. 28 Shows
the graph of Loss over Epochs. Table II shows the other model
parameters. Model shows accuracy around 58% .

E. ResNext:

ResNeXt is an extension of the ResNet architecture that
introduces a new dimension called ”cardinality”. The cardinal-
ity represents the number of parallel paths within a ResNeXt
block. The network is, as illustrated in Fig. 29,. As a result, by
increasing the cardinality, ResNeXt can capture more diverse

Fig. 18. Confusion Matrix for Training Data of first NN

Fig. 19. Confusion Matrix for Testing Data of first NN

Fig. 20. Model Architecture

Fig. 21. Train Accuracy for improvised model

Number of Parameters 2333002
Optimizer Adam

Hyp. Params Lr = 0.001
Batch Size 32

Number of epochs 30
TABLE II
RESNET

features and improve the model’s performance. Figs. ?? and
?? show the training and test set accuracy versus epochs for
this network, which was only trained for 25 epochs. Fig. ??
Shows the graph of Loss over Epochs. Table III shows the
other model parameters.

Fig. 22. Test Accuracy for improvised model



Fig. 23. Loss for improvised model

Fig. 24. Confusion Matrix for Test Data of improvised model

Number of Parameters
Optimizer Adam

Hyp. Params 0.001
Batch Size 32

Number of epochs 25
TABLE III
RESNEXT

F. DenseNet:

DenseNet is a prominent neural network architecture no-
table for its dense connectivity pattern. Every layer in a
DenseNet is feed-forward connected to every other layer. This
form of connectivity promotes feature propagation throughout
the network, minimises the number of parameters, and allows
features to be reused. The network is, as illustrated in Fig.
30. The model is made up of dense blocks with several dense
layers inside of them. The input and output of each previous
layer are concatenated within each thick layer. The following
layers then get this concatenated input. Each dense layer also
includes convolutional processes, rectified linear unit (ReLU)
activation, and batch normalisation. The number of feature
maps that each dense layer generates is determined by the

Fig. 25. ResNet Architecture

Fig. 26. ResNet Train Accuracy over Epochs

Fig. 27. ResNet Test Accuracy over Epochs



Fig. 28. ResNet Loss over Epochs

Fig. 29. ResNext Architecture

growth rate parameter. The number of feature maps increases
as the network moves through the dense blocks, capturing
progressively more intricate patterns in the input data.

Figs. ?? and ?? show the training and test set accuracy
versus epochs for this network, which was only trained for
25 epochs. Fig. ?? Shows the graph of Loss over Epochs.
Figs. ?? and ?? show the confusion matrix of train and test
respectively. Table IV shows the other model parameters.

G. Discussion and Conclusion: Phase 2

In order to create an image classifier for this project,
we used the CIFAR-10 dataset to implement various neural
network topologies. Each relevant paragraph contains a table

Fig. 30. DenseNet Architecture

Number of Parameters 1738714
Optimizer Adam

Hyp. Params Lr = 0.001
Batch Size 32

Number of epochs 30
TABLE IV
DENSENET

containing the hyperparameters that were utilised to train
each network design. Each network’s accuracy and results are
given in the relevant part. It has been discovered through the
exercise of implementing several types of Neural Nets that
every architecture has pros and cons of its own. A basic CNN
trains in a very short amount of time, however its test results
are not very accurate.

It is theoretically possible to argue that as CNN gets deeper
and deeper, the network’s accuracy will increase, yet this is
untrue. The network becomes more complex as the number of
convolution layers rises, and after a certain point, the accuracy
of the network drops. We refer to this issue as ”overfitting” the
data. In order to address this issue, many architectures were
developed. By adding skip connections (ResNet), introducing
cardinality (ResNext), or feed-forwarding the input straight to



each successive layer (DenseNet), these new networks each
solve the overfitting issue in a different way. These are some
learnings that I had while doing this homework.

REFERENCES

[1] https://www.tensorflow.org/tutorials/images/deepcnn
[2] https://www.cs.toronto.edu/ kriz/cifar.html
[3] https://docs.scipy.org/doc/scipy/tutorial/signal.html
[4] https://hannibunny.github.io/orbook/preprocessing/04gaussianDerivatives.html
[5] https://rbe549.github.io/spring2024/hw/hw0/pbliteout
[6] https://github.com/akathpal/
[7] https://en.wikipedia.org/wiki/Gaborf ilter


