
HW0: Alohomora
Mayank Bansal

Robotics Engineering
Worcester Polytechnic Institute

Email: mbansal1@wpi.edu

I. PHASE1: SHAKE MY BOUNDARY

The aim here is to develop the pb-lite boundary detection
algorithm, where ’pb’ stands for Probability of Boundary. This
terminology is used as the algorithm estimates the chance of
each pixel in an image being a boundary. This approach not
only looks at the gradients in intensity but also examines the
variations in texture and color to identify edges. The process
is divided into four main steps:

• Generation of filter bank.
• Generation of texton, brightness and color maps.
• Generation of texton, brightness and color gradient maps.
• Boundary detection using the maps, Sobel and Canny

baselines.

A. Generation of filter banks

In order to get the texture information from the images, a
number of different filters, collected into a filter bank is applied
on to the images. The filters applied may be of different scales
and orientations. Three main kinds of filters are used in this
phase:

1) Oriented Derivative of Gaussian (DoG) filters: These
filters, which are Derivative of Gaussian filters in various
orientations, are created by applying a Sobel operator to
a Gaussian kernel. The set includes Oriented DoG filters
of 2 scales and 16 orientations, as illustrated in figure
1.

2) Leung-Malik Filters: This filter set contains 48 filters of
multiple scales and orientations, including 36 first and
second order derivatives of Gaussians in 6 orientations
and 3 scales, 8 Laplacian of Gaussian (LoG) filters, and
4 Gaussians. For this experiment, two versions of Leung-
Malik filter banks, namely LM small and LM large, were
created. Figures 2 and 3 show the LM small and LM
large filter banks, respectively.

3) Gabor filters: Inspired by the functioning of the human
eye, these filters consist of a Gaussian kernel modulated
by a sinusoidal wave. The Gabor filter bank created for
this experiment is depicted in figure 4.

B. Texton, Brightness and Color Maps

After generating filter banks, each filter is applied to the
input images, producing a vector of filter responses at each
pixel. This vector encodes the texture properties of the image.
With N filters in the bank, the output is an N-dimensional
vector per pixel.

Fig. 1. Oriented Derivative of Gaussian Filter Bank.

Fig. 2. Small Leung-Malik Filter Bank

Next, these N-dimensional vectors are converted into dis-
crete texton IDs. This is achieved by clustering the filter
responses into K textons using KMeans clustering, resulting
in a Texton map (T) with values ranging from 1 to K. In this
experiment, K is set to 64.

Similarly, Brightness (B) and Color maps (C) are created.
The Brightness map clusters grayscale intensity values, while
the Color map uses the three-channel color data.

C. Texton, Brightness and Color Gradient Maps

The texton, brightness, and color maps of the input images
were created to identify gradients, thereby revealing areas
where changes in texture, intensity, and color occur. Gradients
are determined using half-disc masks, as illustrated in figure
5. These masks, binary images of half-discs in pairs, simplify
the process of calculating χ2 distances through straightforward
filtering operations. This approach replaces the more complex
method of accumulating histogram counts across pixel neigh-
borhoods. For this study, half-disc masks were generated in 8
orientations and 3 scales. The texton, brightness, and color
maps are filtered using the masks. Then, the χ2 distances



Fig. 3. Large Leung-Malik Filter Bank

Fig. 4. Gabor Filter Bank

between two histograms g and h can be obtained by using
the equation shown below:

χ2 =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

Fig. 5. Half-disc masks

D. Boundary Detection

Before proceeding to generating the pb-lite output, we must
read all the Sobel and Canny baselines. These baselines can
be used to generate the pb-lite output with the given equation:

PbEdges =
Ta +Bb + Cc

3
· (w1 · cannyPb + w2 · sobelPb)

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this stage, my goal is to apply various neural net-
work architectures for classifying images from the CIFAR-10
dataset, which comprises 60,000 images (50,000 for training
and 10,000 for testing) each with a resolution of 32x32
pixels, distributed across 10 different categories. Throughout
the experiment, I have trained five different models, namely:

1) A Basic Neural Network designed by me.
2) An Advanced Neural Network of my own design.
3) Resnet.
4) ResNeXt.
5) DenseNet.

A. Basic Neural Network

The network consists of two convolutional layers, both of
which are followed by ReLU activation functions to introduce
non-linearity. After each ReLU, there is a max-pooling layer
that reduces the spatial dimensions by taking the maximum
value over a 2x2 window. The output from the convolutional
layers is then flattened into a one-dimensional vector. This
flattened vector is fed into a fully connected layer with an
output size of 100, followed by another ReLU activation. The
final output is produced by a fully connected layer that maps
to the number of classes (OutputSize). This final layer would
be used to determine the predicted class based on the highest
output value.

For this experiment, I selected a batch size of 64 and the
optimizer selected was AdamW with a learning rate of 1e-3. I
also selected Cross Entropy loss for training the network. The
training results are shown in figures 6 through 9.training

B. Modified Basic Neural Network

This model is a refined neural network designed for im-
age classification, featuring two key convolutional layers to
capture the input image’s features. Each convolutional layer
is enhanced with batch normalization, which standardizes the
activations to aid in faster and more stable training. Non-linear
transformation is introduced after each batch normalization via
ReLU activation functions, allowing the network to handle
complex patterns.

Spatial feature reduction is achieved with max-pooling
layers following each ReLU, which also helps in making
the detection of features somewhat invariant to scale and
orientation. After the convolutional stages, the network flattens
the data, preparing it for the dense layers.

The dense part of the network begins with a fully connected
layer of 100 neurons, which is batch-normalized and passed
through another ReLU activation. To combat overfitting, a
dropout layer with a 50



Fig. 6. Architecture for BasicNet

Fig. 7. Train Accuracy for BasicNet

Fig. 8. Train Loss for BasicNet

Fig. 9. Confusion matrix after training for BasicNet

The final layer is a fully connected layer with a neuron count
equal to the number of classes (denoted by ‘OutputSize‘),
which maps the learned features to class scores for classifica-
tion. The enhanced network is designed to learn robustly with
improved generalization capabilities over the basic network.

For this experiment, I selected a batch size of 64 and the
optimizer selected was AdamW with a learning rate of 1e-3. I
also selected Cross Entropy loss for training the network. The
training results are shown in figures 10 through 13.

C. ResNet

This neural network architecture is the ResNet model, which
is particularly known for its ability to efficiently train deeper
networks. It starts with an initial convolutional layer that
processes the input image, followed by batch normalization
and a ReLU activation to introduce non-linearity.

The core of the network consists of a series of building
blocks, each containing two convolutional layers. Each con-
volutional layer is followed by batch normalization and ReLU
activation. These blocks have a distinctive feature: a shortcut
connection that bypasses the two convolutional layers, directly
adding the input of the block to its output. This design helps in
preventing the vanishing gradient problem, allowing for deeper
network architectures by ensuring that the gradient can flow
through the network without diminishing.

The network then applies an adaptive average pooling layer,
which adapts the output size to a consistent shape, regardless
of the input size. This is particularly useful for connecting
convolutional layers to fully connected layers, as it ensures
that the fully connected layer always receives the same amount
of input features.

Finally, the network concludes with a fully connected layer
that maps the learned feature representations to the desired
number of output classes. This final layer is what determines
the classification output based on the features extracted and
processed through the network.

For this experiment, I selected a batch size of 64 and the
optimizer selected was Adam with a learning rate of 1e-3. I



Fig. 10. Architecture for Modified BasicNet

also selected Cross Entropy loss for training the network. The
training results are shown in figures 14 through 17.

D. ResNeXt

This neural network is the ResNeXt architecture, stream-
lined for image classification tasks. It commences with an
initial convolutional layer to process the input image, reducing
its spatial dimensionality. This layer is followed by batch
normalization and a ReLU activation function to introduce
non-linearity.

Fig. 11. Train Accuracy for Modified BasicNet

Fig. 12. Train Loss for Modified BasicNet

At its core, the network consists of several sequential blocks.
Each block includes a convolutional layer, batch normaliza-
tion, and a shortcut connection, similar to those found in
ResNet architectures. The shortcut connection helps prevent
the vanishing gradient problem by allowing gradients to flow
more easily through the network. If the input and output
channels differ in number or a stride is applied, the shortcut
connection includes its own convolutional layer to match the
dimensions.

The architecture features multiple layers, each comprising
a series of these blocks. These layers are designed to pro-
gressively increase the number of channels while reducing
the spatial dimensions of the feature maps. This structure

Fig. 13. Confusion matrix after training for Modified BasicNet



Fig. 14. Architecture for ResNet

Fig. 15. Train Accuracy for ResNet

Fig. 16. Train Loss for ResNet

allows the network to learn increasingly complex and abstract
representations of the input data.

After passing through these layers, the network employs
an adaptive average pooling layer, which reduces the spatial
dimensions to a fixed size, making it easier to connect to fully
connected layers. The flattened output of the pooling layer is
then fed into a fully connected layer, which maps the extracted
features to a specified number of output classes, typically
corresponding to different categories in a classification task.

For this experiment, I selected a batch size of 64 and the
optimizer selected was Adam with a learning rate of 1e-3. I
also selected Cross Entropy loss for training the network. The
training results are shown in figures 18 through 21.

Fig. 17. Confusion matrix after training for ResNet



Fig. 18. Architecture for ResNeXt

Fig. 19. Train Accuracy for ResNeXt

Fig. 20. Train Loss for ResNeXt

E. DenseNet

This network is the DenseNet architecture, designed for
image classification. It starts with an initial convolutional layer
that processes the input image, followed by batch normaliza-
tion and a ReLU activation function for non-linearity.

The network’s distinctive feature is its use of dense blocks,
where each block includes a batch normalization layer, a con-
volutional layer, and then combines its output with the input
features using concatenation. This approach allows each layer
to access feature maps from all preceding layers, promoting
feature reuse and reducing the number of parameters, making
the network more efficient.

After each dense block, except for the last one, there’s a
transition layer that includes batch normalization, a convolu-
tional layer with a smaller kernel size, and average pooling.
This layer reduces the dimensionality of the feature maps, thus

Fig. 21. Confusion matrix after training for ResNeXt



Fig. 22. Train Accuracy for DenseNet

Fig. 23. Train Loss for DenseNet

controlling the growth of computational requirements.
The number of features in each dense block increases due

to the concatenation of input and output feature maps, but the
transition layers help in managing this growth by compressing
the number of feature maps.

The network concludes with a final batch normalization, an
adaptive average pooling layer to ensure a consistent output
size, and a fully connected linear layer that maps the extracted
features to the desired number of output classes, corresponding
to different categories in the classification task.

For this experiment, I selected a batch size of 64 and the
optimizer selected was Adam with a learning rate of 1e-3. I
also selected Cross Entropy loss for training the network. The
training results are shown in figures 22 through 25.

Fig. 24. Confusion matrix after training for DenseNet

Fig. 25. Architecture for DenseNet


	Phase1: Shake My Boundary
	Generation of filter banks
	Texton, Brightness and Color Maps
	Texton, Brightness and Color Gradient Maps
	Boundary Detection

	Phase 2: Deep Dive on Deep Learning
	Basic Neural Network
	Modified Basic Neural Network
	ResNet
	ResNeXt
	DenseNet


