
RBE/CSE549 CVHW0 - Alohomora
Butchi Venkatesh Adari

Masters RBE
Worcester Polytechnic Institute

Worcester , MA , 01609
Email: badari@wpi.edu

Using 1 late day

Abstract—There are two phases in this Introductory homework
. In the first phase a simplified version of probability of boundary
detection algorithm to detect edges in the given images. To achieve
this I used Oriented DOG , Leung-Malik , etc.. filter banks
and extracted Texture , Brightness and Color features from
the Images. By using these filters along with canny and sobel
baselines yielded in better edge detection. In the second phase I
implemented four Neural Networks and trained them to compare
their architectures and accuracies on CIFAR10 dataset.

I. PHASE 1 : SHAKE MY BOUNDARY

In Phase 1 of this homework, I implemented a boundary
detector algorithm called ’pb-lite’ which is a simplified version
of the probability of boundary detection algorithm presented
in [1]. The output of the pb-lite algorithm is a per-pixel
probability of boundary. Fig. 1 gives an overview of the
algorithm. First, we filter the input images with the filter bank
and apply k-means clustering to develop the texture, brightness
and color maps for an input image. We then compute the
texture gradient T , brightness gradient B and color gradient
C. We then calculate the Chi-square distances with the help
of half-disk filters. Finally, we combine the information from
the features with baseline methods such as Sobel and Canny
to get the pb-lite output.

Fig. 1. Overview of pb lite pipeline.

A. Filters

Images are filtered using a collection of filters to mea-
sure texture properties and to aggregate regional texture and
brightness distributions. Three different sets of filter banks are
created for this purpose.

1) Oriented DOG Filters: A simple DOG Filter is created
by convolving a Sobel Filter and a Gaussian kernel. This
filter can then be rotated at different scales to find a series

of oriented DoG Filters. The Gaussian function is given by
G(x;σ) = 1√

2πσ
e−

x2

2σ2 .

Fig. 2. Oriented DoG Filters

2) Leung-Malik Filters: The Leung-Malik filters are a set of
multi-scale, multi orientation filter bank with 48 filters. Filters
consists of first and second order derivatives of Gaussian with
3 different scales , 6 orientations and 8 laplacian filters and 8
basic gaussian kernels.

G(x, y;σ, γ, ψ, λ, θ) =
1

2πσ2
e−

x′2+γ2y′2

2σ2 cos

(
2πx′

λ
+ ψ

)
where

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)

Fig. 3. Leung-Malik Filters

3) Gabor Filters: A Gabor filter is a gaussian kernel
function modulated by sinusoidal plane wave.

Fig. 4. Leung-Malik Filters



B. Texton , Brightness , Color Map

Textron maps, brightness maps, and color maps play crucial
roles in computer graphics and data visualization. A Textron
map is utilized for detailed texturing, defining surface proper-
ties like color and reflectivity in 3D rendering. On the other
hand, a brightness map, represented in grayscale, influences
the intensity of lighting or shading across a surface. It guides
how light interacts with different parts of a 3D object based
on variations in brightness. Color maps, or colormaps, are sets
of colors mapped to specific values and are often employed
in data visualization. These maps represent scalar values,
with distinct colors indicating different data values. Together,
these mapping techniques contribute to the visual richness and
accuracy of rendered graphics and enhance the representation
of data in visualizations.

Fig. 5. (T ,B, C) for Image 1

Fig. 6. (T ,B, C) for Image 2

Fig. 7. (T ,B, C) for Image 3

Fig. 8. (T ,B, C) for Image 4

1) Results:

II. PHASE 2 : DEEP DIVE ON DEEP LEARNING

In this phase, we implemented multiple CNNs to perform
classification task on the CIFAR-10 dataset. The dataset had
10 classes, 50000 training images and 10000 test images.

Fig. 9. (T ,B, C) for Image 5

Fig. 10. (T ,B, C) for Image 6

Fig. 11. (T ,B, C) for Image 7

Fig. 12. (T ,B, C) for Image 8

Fig. 13. (T ,B, C) for Image 9

Fig. 14. (T ,B, C) for Image 10

Fig. 15. (T ,B, C) for Image 1



Fig. 16. (T ,B, C) for Image 2

Fig. 17. (T ,B, C) for Image 3

Fig. 18. (T ,B, C) for Image 4

Fig. 19. (T ,B, C) for Image 5

Fig. 20. (T ,B, C) for Image 6

Fig. 21. (T ,B, C) for Image 7

Fig. 22. (T ,B, C) for Image 8

Fig. 23. (T ,B, C) for Image 9

Fig. 24. (T ,B, C) for Image 10

Fig. 25. Canny , sobel , pblite for Image 1

Fig. 26. Canny , sobel , pblite for Image 2

Fig. 27. Canny , sobel , pblite for Image 3

Fig. 28. Canny , sobel , pblite for Image 4

Fig. 29. Canny , sobel , pblite for Image 5



Fig. 30. Canny , sobel , pblite for Image 6

Fig. 31. Canny , sobel , pblite for Image 7

A. Custom Model

Network Architecture: The model takes an input image with
three color channels (like red, green, and blue) and applies
three sets of operations. First, it uses convolutional layers
to detect features in the image. Then, it applies hyperbolic
tangent activation functions to introduce non-linearity. After
that, it uses average pooling to reduce the spatial dimensions
of the features. Batch normalization is applied to normalize the
output. This process is repeated twice with different numbers
of channels.

Next, the network flattens the output and passes it through
two fully connected layers with hyperbolic tangent activations.
These layers are designed to make sense of the detected
features and produce a final output, the size of which is
determined by the value specified for ‘OutputSize‘. Overall,
this architecture is a Convolutional Neural Network (CNN)
commonly used for image classification tasks. The architecure
is shown in Fig 35.

B. ResNet Model

Network Architecture: This ResNet architecture consists
of blocks and residual blocks for feature extraction from
images. Each block includes convolutional layers with batch
normalization and ReLU activation, followed by max-pooling

Fig. 32. Canny , sobel , pblite for Image 8

Fig. 33. Canny , sobel , pblite for Image 9

Fig. 34. Canny , sobel , pblite for Image 10

Fig. 35. Custom Model Architecture



Fig. 36. Confusion Matrix on Train Dataset.

Fig. 37. Confusion Matrix on Test Dataset.

for dimension reduction. The residual blocks contain two
convolutional layers with batch normalization and ReLU. The
final layer applies global max-pooling, flattening, dropout, and
a linear layer for classification. The architecture shown in Fig
40 and the confusion matrices for both on Train and Test
datasets are shown in Fig 41, Fig 42 respectively.

C. DenseNet Model

Network Architecture: The ‘conv2d block‘ class defines a
block of operations used in a DenseNet. It performs batch nor-

Fig. 38. Training Accuracy Fig. 39. Training Loss

Fig. 40. ResNet Model Architecture

Fig. 41. Confusion Matrix on Train Dataset.

Fig. 42. Confusion Matrix on Test Dataset.



Fig. 43. ResNet Accuracy Fig. 44. ResNet Loss

malization, ReLU activation, and two convolutional operations
(1x1 and 3x3), with the output being the concatenation of the
input and the result of these operations.

The ‘DenseNet‘ class implements a DenseNet architecture
for image classification. It consists of multiple dense blocks
connected by transition layers. Each dense block contains
several ‘conv2d block‘ layers. The architecture ends with a
classifier that includes batch normalization, average pooling,
flattening, and a linear layer for the final classification into 10
classes. The architecture shown in Fig 45 and the confusion
matrices for both on Train and Test datasets are shown in Fig
46, Fig 47 respectively.

D. ResNeXT Model

Network Architecture: The ‘res block‘ class defines a resid-
ual block for the ResNeXT architecture, employing grouped
convolutions with a bottleneck structure. It takes input chan-
nels, cardinality, base width, and stride as parameters.

The ‘ResNeXT‘ class implements ResNeXT for image
classification. It includes an initial convolution layer, batch
normalization, and three dense blocks. Each dense block
contains multiple ‘res block‘ layers, forming the architecture.
The final classifier consists of average pooling, flattening, and
a linear layer for classification into 10 classes.

ResNeXT uses grouped convolutions to enhance feature
learning and diversity. The number of groups and base width
parameters control the architecture’s characteristics. The ar-
chitecture shown in Fig 50 and the confusion matrices for
both on Train and Test datasets are shown in Fig 51, Fig 52
respectively.

Hyperparam - Setting

Optimizer AdamW
Learning Rate 1e-3
Weight Decay 1e-4
MiniBatchSize 128
Max Epochs Trained 50

TABLE I
HYPERPARAMETERS MADE FOR TRAINING

E. Comparison

The graphs which are shown above are for relative compari-
son of the variance of train and test accuracy and loss, some of

Fig. 45. ResNet Model Architecture



Fig. 46. Confusion Matrix on Train Dataset.

Fig. 47. Confusion Matrix on Test Dataset.

Fig. 48. DenseNet Accuracy Fig. 49. DenseNet Loss

Model Name No. Parameters Total Size(MB) Params Size (MB)

CIFAR10Model 57,574 0.36 0.22
ResNet 2,61,962 5.44 4.43
ResNext 3,270,794 42.50 30.02
DenseNet 489,112 58.19 56.31

TABLE II
SIZE OF THE MODELS

Fig. 50. ResNeXT Model Architecture

Fig. 51. Confusion Matrix on Train Dataset.



Fig. 52. Confusion Matrix on Test Dataset.

Fig. 53. ResNeXT Accuracy Fig. 54. ResNeXT Loss

the models I have trained overnight for good number of epochs
generated decent accuracy which you can find below. Those
checkpoints are shared along with the code. The models we
have used are heavy as I wanted to test standard Architectures
The architectures that I made are generalized which can be
changed to get different variants of the networks. For these
networks, which I have trained please refer to the table below.
All the models are trained on GTX1660Ti 6GB VRAM with
i9 11th gen CPU (16GB RAM) and the inference is also
performed on the same device. The hyperparameters used for
training are listed in TABLE 1. The details of the models are
listed in TABLE 2.

III. CONCLUSION

Phase I: During the initial phase, I extensively utilized
traditional image processing techniques to apply conventional
filters on the images. One notable challenge I encountered
involved debugging an issue related to the application of
Gaussian first and second derivatives along specific axes.
Despite experimenting with variations in taking first or second
derivatives along different axes, the overall results remained
largely unchanged. It was interesting to observe that the filters
presented in reference [1] differed from those I implemented.
This experience served as a valuable lesson in understanding
the significant impact that altering such parameters can have.

Phase II: The subsequent phase focused on addressing
code-related issues that were within the realm of resolution.

Reviewing academic papers, even at a cursory level, consumed
a considerable amount of time, prompting a realization about
the importance of dedicating more time to refreshing fun-
damental concepts. The examination of the Custom Convo-
lution network and other networks revealed prevalent issues
of overfitting. To mitigate this, augmentation techniques and
improved training strategies can be employed to optimize
hyperparameters. Currently, our approach involves Random
Crop Augmentation, which has shown slight improvements
in certain cases.

ACKNOWLEDGMENT

Thank you professor!


