
RBE/CS549: Project 4
Deep and Un-Deep Visual Inertial Odometry

Prasanna Natu
M.S. Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA
pvnatu@wpi.edu

Peter Dentch
M.S. Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA

pdentch@wpi.edu

Abstract—This project aims to implement Vision-aided Odom-
etry utilizing the Multi-state Constraint Kalman Filter (MSCKF)
approach. The motivation behind adopting MSCKF for Visual
Inertial Odometry lies in addressing the challenges faced by
autonomous vehicles in employing high-quality sensors and
efficient processors. By implementing this approach, it is possible
to achieve accurate state estimation and localization without
relying on costly and heavy sensor systems. In this project, a
filter-based method is developed, fusing data from two sensors: a
stereo camera and an IMU. The MSCKF is employed to estimate
the state of the robot, while sensor fusion of the IMU and stereo
camera are used to determine its localization. In the Phase 2 we
try deep Learning appraoches to overcome the drawback and
get a generalised model for Visual Inertial Odometry.

Index Terms—Visual Inertial Odometry, Multi-state Constraint
Kalman Filter, MSCKF, sensor fusion, stereo camera, inertial
measurement unit, IMU.

I. PHASE I

A. INITIALIZING GRAVITY AND BIAS

The 6-DOF IMU sensor utilized in this project is prone
to biases that must be rectified in each reading. The 6-
DOF represents three Degrees of Freedom for rotation
(gyroscope) and three Degrees of Freedom for acceleration
(accelerometer). This correction process can be considered
for the calibration of the IMU sensor, where the biases in
both rotation and acceleration are calculated and subsequently
subtracted from every subsequent IMU reading.

This calibration is performed by keeping the rotor stationary
and collecting approximately 100 - 200 readings, followed by
calculating the mean of these readings. Ideally, the gyroscope
reading should be [0, 0, 0]; however, due to noise and biases,
small fluctuations in the gyroscope readings are observed.

To correct for these fluctuations, the mean of the collected
readings is subtracted from the subsequent IMU readings
while the rotor is stationary, as described earlier. Ideally, the
accelerometer reading should be [0, 0, -g] in the world frame.
Nevertheless, noise and biases in the low-cost IMU sensor
cause fluctuations.

The overview of the traditional method which we imple-
mented is represented below:

xI =
(

I
Gq

⊤ b⊤
g

Gv⊤
I b⊤

a
Gp⊤

I
I
Cq

⊤ Ip⊤
C

)⊤
(1)

Fig. 1. State Vector

X̃k =
[
X̃IMUk

T δθC1
T Gp̃C1

T . . . δθCN
T pCN

]T
(2)

Fig. 2. Error State Vector

B. BATCH IMU PROCESSING

IMU batch processing is carried out to process IMU
messages until the next set of images from the stereo camera
becomes available. Prior to this, it is crucial to define the
state vector to estimate subsequent states. The state vector
comprises states in both the camera and IMU.

As depicted in Figure 1, the state vector includes the
quaternion q, which describes the rotation from the global
to the IMU frame. The variables bg and ba represent the
biases in the gyroscope and accelerometer, respectively. The
position and velocity of the body frame in the inertial (world)
frame are denoted by pi and vi. The transformations between
the IMU and camera frames are represented by qIc and pIc.

For N camera poses, the state vector adds a new state in
the buffer, with the first element being the states associated
with the IMU sensor.

The objective of the batch IMU processing function is to
predict the subsequent state and update the state information
using the process model for a given time step, based on
the IMU messages. The state information is updated after
processing the IMU data and concludes after a specified time
duration.

C. Process Model

The process model predicts the IMU state using a motion
model derived from error states, as shown in Figure 2. The
error in quaternion is a quaternion operation, represented as:

δq = q ⊗ q−1
0 (3)

The ω̂ and â are given as follows:

ω̂ = ωm − bg (4)

Ctq̇ = 1
2Ω(ω̇)

l
Gq̂, ḃg = 03× 1,,

G′̂
v̂ = C

(
Glq̂

)⊤
â+ Gg,

ḃa = 03× 1, Gṗj =
av̇,

Cq̇q = 03×1,
I ṗC = 03× 1

Fig. 3. IMU dynamics

Φk = Φ(tk+1, tk) = exp
(∫ tk+1

tk
F(τ)dτ

)
Qk =

∫ tk+1

tk
Φ (tk+1, τ)GQGΦ(tk+1, τ)

⊤
dτ

Fig. 4. Covariance Matrix

â = am − bg (5)

The other errors are additive errors that simply add to
the previous quantity. These error states are employed to
determine the robot’s process model. Angular velocity and
linear acceleration are derived, as illustrated in Figure 3, where
Ω is the quaternion derivative and is expressed as:

Ω(ω) =

[
ω ω̂
ωT 0

]
(6)

Here, ω̂ is a skew-symmetric matrix of the ω vector. The
linearized continuous error dynamics of the IMU error state
are defined as follows:

˙̃XI = FX̃I +GnI (7)

The term nI denotes the Gaussian noise of the accelerome-
ter and gyro readings. To propagate the IMU measurement in
discrete time, the 4th-order Runge Kutta method is applied.

The F matrix in the above equation (discrete-time equation)
is utilized to derive the discrete-time state transition matrix,
and the G matrix is employed to obtain the discrete-time
noise covariance matrix. ϕK is approximated using a Taylor
expansion up to the 3rd order of F, while Qk is a discrete-
time state covariance matrix obtained by continuous-time
methods of state covariance Q and G matrix. The observability
constraint is applied by modifying the transition matrix. The
state transition matrix is corrected by making it symmetric in
this step.

Fig. 1. Runge Kutta

D. State Augmentation

When new images are received, the state should be aug-
mented with the new camera state. The pose of the new camera
state can be computed from the latest IMU state.

The augmented covariance matrix is given by the following
equation in Section VI, and the J matrix is given by the
equation in Section VI.

E. Adding Feature Observation

Here, we check if the feature observed is in the map server
dictionary or not. If it is not there, we add a new key to the
map server dictionary.

F. Measurement Model and Update

A single feature fj is observed by the stereo cameras
with the pose. In the same instance, the stereo cameras have
different poses, for the left and the right cameras respectively.
Although the state vector only contains the pose of the left

camera, the pose of the right camera can be easily obtained
using the extrinsic parameters from the calibration.

The dimension is then reduced to R3 assuming the stereo
images are properly rectified. However, by representing the
same in R4, we can skip the rectification, and the camera
poses are given by:

The position of the feature in the world frame is calculated
using Gaussian-Newton least square minimization. The resid-
ual of measurement can be approximated by the following
equation:

G. State Augmentation

The global frame feature pose is determined using the
camera pose, which causes the uncertainty of pj in the global
frame to be related to the camera states. By projecting the
residual in equation (4) onto the null space V of HJ , this
correlation is removed.

1) Determine Cam0 pose.
2) Determine Cam1 pose.
3) Identify 3D feature position in the world frame and its

observation using stereo cameras.
4) Transform the feature position from the world frame to

the cam0 and cam1 frame.
5) Adjust the measurement Jacobian to maintain observ-

ability constraint.
6) Calculate the residual.

II. UPDATING PROCEDURE

The updating process is executed in the following manner:

1) Verify if H and r are empty.
2) Perform decomposition on the final Jacobian matrix to

minimize computational complexity.
3) Determine the Kalman gain.
4) Calculate the state error.
5) Update the IMU state.
6) Modify the camera states.
7) Refresh state covariance.
8) Ensure covariance symmetry.

III. RESULTS

The outcomes of our implementation are presented below.

Fig. 2. Classical approach translation error percent across distance

Fig. 3. Classical approach translation error across distance

Fig. 4. Output

Fig. 5. Classical approach trajectory side view

Fig. 6. Classical approach trajectory top view

IV. PHASE 2

A. Need of Deep Learning approach

The MSCKF is working brilliantly provided the data from
sensors are good and is not drifting over time. However, that is
not the case usually overtime the IMU drifts and If the feature
is not good for the Camera the output affects badly. In this
part, we try to first apply the deep learning approach to the
VIO so that we can overcome this drawback

B. Introduction

The approach towards VIO was to start simple and get
Visual and Inertial Odometry and then combined those results
using simple weighted or another neural network to get results.
This can use various approaches and can be varied depending
on the size of the dataset and computing power.

C. Dataset

For our implementation, we used EuRoC MAV Dataset’s
subset, Machine Hall 01,02,03,04,05 The dataset we used is
comparatively small and hence the chance of overfitting will
be always high in such cases.

We had to convert all the data into relative data, and using
transformation we successfully got it.

As these sensors are completely different from each other
and have different ways of recording the data they work at
different frequencies:
IMU frequency: 200Hz
Camera frame rate: 20 Hz
Ground truth rate:100 Hz
As a result, to overcome the problem of different frequencies
we only consider the data of common timestamps across all
data.

D. Loss

As we knew the L1 and L2 norms are most commonly used
loss and are commonly used In this approach, we combined
both the losses together so that depending on the value of β
it can be easily scaled

Lδ,β(y, f(x)) =

{
1
2 (y − f(x))2 if |y − f(x)| ≤ δ

β
(
|y − f(x)| − δ

2

)
otherwise

(8)
Here, y is the true label, f(x) is the predicted value, δ

is the threshold parameter that determines where the loss
function transitions from quadratic to linear, and β is a
scaling factor that determines the relative weight of the linear
and quadratic portions of the loss function.

E. Visual Odometry

Visual Odometry using Deep learning can be extremely
simple and works well with only the CNN network we used
multiple CNN layers to estimate odometry and we even get
good results for the provided dataset. The model is as below:

Fig. 7. Loss vs Epoch for VO

F. Inertial Odometry

For Inertial Odometry as we talked we used the same
concept of common for data generation and used the data
for training the data on Temporal Convolution Network. We
started with the LSTM network, however upon the time and

Fig. 10. Network for VO

data it needs to train we switched to Temporal Convolution
Networks. The temporal convolution network also worked
well for the dataset and in less than 20 epochs get overfit and
gave us different results. The models we used are pretty big
hence not included in the report. The loss vs epoch graph for
the following is shown below:

G. Visual Inertial Odometry

Visual Inertial Odometry is simply combining the Visual
and inertial network with a linear layer at the end that can
be used to get good more optimised results. The network
was huge and it took much longer than only Visual or only
Inertial network. The models we used are pretty big and hence
not included in the report. We thought of two approaches for
Visual image Odometry first is simply the weighted average
of the function.

Fig. 13. Loss vs Epoch for VIO

V. CONCLUSION:

In this Project, we got an overview of sensor fusion and
the ground reality of the complexity and drawback it has. we
tried to completely implement the classical approach using
the Multi-Scaled Kalmann filter in Phase 1, while in Phase
2 we tried to overcome the issue of Phase 1 using different
approaches and networks. In sensor fusion getting time-sync

data is an essential step as it decides your outputs. The so
data interpolation is an essential step that we missed. For
our current approach, we reduce our timestamp by taking
common which indeed affected the overall training and testing
outputs. In the Inertial part, we didn’t reduce the IMU biases
from the measurement leading to an error in trajectories. We
successfully implemented all three networks and losses were
decreasing. We got considerably good trajectories for our
outputs for the trained network We realised that for such a
network we need varied data-set as the network easily overfits
in no time. The loss convergence doesn’t guarantee the better
output

REFERENCES

[1] RBE 549: Robot Perception (2023). Project 4: Visual Inertial Odometry.
Retrieved from https://rbe549.github.io/spring2023/proj/p4/

[2] Sun, K., Mohta, K., Pfrommer, B., Watterson, M., Liu, S., Mulgaonkar,
Y., Taylor, C. J., Kumar, V. (YEAR). Robust Stereo Visual Inertial
Odometry for Fast Autonomous Flight.

[3] Mourikis, A. I., Roumeliotis, S. I. (YEAR). A Multi-State Constraint
Kalman Filter for Vision-aided Inertial Navigation.

[4] Caballero, J., Ledig, C., Aitken, A., Acosta, A., Totz, J., Wang, Z., Shi,
W. (2017). Real-Time Video Super-Resolution with Spatio-Temporal
Networks and Motion Compensation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(pp. 0-0).

[5] Zhan, H., Weerasekera, C. S., Bian, J. -W., Reid, I. (2020). Visual
Odometry Revisited: What Should Be Learnt? In 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA) (pp. 4203-4210).
doi:10.1109/ICRA40945.2020.9197374

[6] Cioffi, G., Bauersfeld, L., Kaufmann, E., Scaramuzza, D. (2023).
Learned Inertial Odometry for Autonomous Drone Racing. In IEEE
Robotics and Automation Letters (RA-L).

[7] Clark, R., Wang, S., Wen, H., Markham, A., Trigoni, N. (YEAR).
VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning
Problem. In Department of Computer Science, University of Oxford,
United Kingdom; Department of Computer Science, University of War-
wick, United Kingdom.

[8] Kendall, A., Grimes, M., Cipolla, R. (YEAR). PoseNet: A Convolu-
tional Network for Real-Time 6-DOF Camera Relocalization.

