
RBE 549:
P4: Deep and Un-Deep VIO

Deepak Harshal Nagle
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: dnagle@wpi.edu
Telephone: (774) 519-8335

Irakli Grigolia
Computer Science

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: igrigolia@wpi.edu
Telephone: (508) 373-3402

Abstract—This report presents two approaches for imple-
menting stereo visual-inertial odometry algorithms: the classical
Multi-State Constraint Kalman Filter (MSCKF) and a deep
learning-based method for enhanced performance. The imple-
mentation builds on a pre-existing codebase provided as starter
code. The paper details the mathematical concepts underlying
the stereo-MSCKF algorithm for the classical approach and the
development of a novel deep learning architecture for visual-
inertial fusion as an alternative.

The results and observations for each approach are docu-
mented in this report. For the classical approach, we focus on the
MSCKF algorithm’s implementation and performance. The deep
learning approach explores the integration of a deep learning
component into the visual-inertial odometry system. The effec-
tiveness of both methods is analyzed through experiments and
comparisons with ground truth trajectories, providing insights
into the potential of each approach for improving visual-inertial
navigation systems.

INTRODUCTION

In this project, we investigate two separate approaches
for estimating depth from images by obtaining scale. The
first approach employs a classical method, which combines
stereo cameras and Inertial Measurement Units (IMUs) for
pose estimation and depth backtracking. Stereo cameras can
estimate depth by matching features but face computational
expense and motion blur limitations. IMUs are effective in
fast movements and jerks but suffer from drifts over time. To
tackle these challenges, we utilize a filter-based stereo visual-
inertial odometry algorithm using the MultiState Constraint
Kalman Filter (MSCKF) and test it on the Machine Hall 01
easy subset of the EuRoC dataset.

In the second approach, we examine the potential of deep
learning techniques for enhancing the performance of visual-
inertial odometry systems. We develop a novel deep learn-
ing architecture for visual-inertial fusion, independent of the
classical approach. For each method, we analyze the results
by comparing them to the ground truth in order to assess
their potential for improved depth estimation and navigation
systems. This evaluation allows us to better understand the
strengths and limitations of each approach and their respective
contributions to the field of visual-inertial navigation.

I. PHASE 1: UN-DEEP VISUAL INERTIAL ODOMETRY

DATA

Machine Hall 01 easy subset of the EuRoC dataset is used
to test the implementation. The data is collected using a VI
sensor carried by a quadrotor flying a trajectory. The ground
truth is provided by a sub-mm accurate Vicon Motion capture
system.

FUNCTIONS

We implement Multi-State Constraint Kalman Filter
(MSCKF), some of the functions implemented are described
below.

initialize gravity and bias:

This function initializes the initial orientation and bias based
on the first readings from the IMU. The average angular and
linear velocities are calculated from the IMU message buffer’s
first few readings. The gyro bias is initialized using the average
angular velocity, and gravity is calculated using the linear
acceleration. The normalized gravity vector is used as the
IMU state, and the initial orientation is set consistently with
the inertial frame. The quaternions represent the final vector,
where G

I q denotes the rotation from the inertial frame to the
body frame, which in this case is the IMU frame. The vectors
GvI and GpI represent the body frame’s velocity and position
in the inertial frame, and bG and ba are the biases of the
measured angular and linear velocities from the IMU. The
representation of the final vector is given by the following
expression

batch imu processing:

The function deals with processing IMU messages from a
buffer, taking into account a specified time range. It operates
by running the process model for each IMU input that falls
within the time range, repeating this process until the end of
the range is reached. Once completed, the current IMU ID is



updated to the next state ID, and any unused IMU messages
are removed from the buffer.

process model:

The aim of this function is to determine the camera module’s
pose (dynamics) based on the most recent update of the IMU
state. To achieve this, the function takes in the time, m gyro
(current angular velocity), and m acc (current linear accel-
eration) as arguments. Following this, the function calculates
the error for each IMU state, as represented by the following
formula.

The linearized continuous dynamics for the error IMU state
is calculated as follows:

F and Q (discrete transition matrices) are calculated as
follows:

The matrix exponential is approximated to third order as
follows:

predict new state:

After obtaining the current state, we apply the fourth-order
Runge-Kutta method to propagate the state and predict its
new value. Specifically, we use a function called ”predict new
state,” which takes as input the time step (dτ ), the gyroscope
data, and the acceleration information for the current state. To

begin, we calculate the normalized error state of the angular
velocity data. Next, we compute the Ω matrix by following a
specific procedure.

We retrieve the present orientation, velocity, and position
data from the IMU state server. Based on the current state
and the Ω values, we compute the angular velocity and
acceleration, which we then approximate using the Runge-
Kutta method.

Once we have computed the estimated orientation, we
convert it into quaternions and use this information to update
the velocity and position data for the current IMU state. These
updated values are then used as the current state information
to determine the next state in the sequence.

State Augmentation:

In this step, our aim is to calculate the state covariance
matrix, which will help us in disseminating the ambiguity of
the given state. Initially, we extract the IMU and camera state
values that correspond to the rotation from the IMU to the
camera and the translation vector from the camera to the IMU.
Subsequently, we incorporate a fresh camera state into the
state server, utilizing the initial IMU and camera state. The
augmentation Jacobian is calculated as follows:

The state covariance matrix is resized and the IMU state is
propagated:



This is the Augmented covariance matrix. It is regularly
updated through this function.

F. Incorporating feature observations
Firstly, the feature message is acquired as input for this

function. We then determine the current IMU state ID and
evaluate the number of features. Following that, we succes-
sively add each feature from the feature message to the map
server if it isn’t already present. Additionally, we maintain a
count of the tracked features. For every given state, the map
server is updated, and all features are tracked. The tracking rate
is computed as the ratio of the number of tracked features to
the total number of available features.

G. Updating measurements
A measurement model is utilized to update state estimates.

A residual, denoted as r, is linearly dependent on state errors,
represented by the following relation [3]:

In the equation above, H represents the measurement Ja-
cobian matrix, and the noise term denotes a zero-mean,
white, uncorrelated state error. The estimated Kalman filter
framework is implemented. Initially, we examine whether the
existing H and r values are zero. We then attempt to reduce the
complexity of the Jacobian matrix using QR decomposition to
minimize computation requirements:

Here, Q1 and Q2 are unitary matrices with columns that
form bases for the range and null space of Hx., respectively.
TH is an upper triangular matrix. Next, we calculate the
Kalman gain according to the equation:

K = P TH (THPTH
T +Rn)

−1

In this equation, K represents the Kalman gain, P is the state
covariance matrix,TT

H is the upper triangular matrix, and Rn

is the noise covariance matrix. After calculating the Kalman
gain, the state error is computed as:

∆X = K rn
Using this state error, the IMU state is updated first,

followed by the camera states. Lastly, the state covariance is
updated, and the covariance matrix is adjusted to be symmet-
ric.

IV. Results
The input data employed for this project is sourced from

the Machine Hall 01 easy (MH 01 easy) subset of the EuRoC
dataset. Figure 1 displays the trajectory output for this data,
which aligns with the anticipated outcome. The output video
is included with the code files.

Final plot:

II. PHASE 2: DEEP VISUAL INERTIAL ODOMETRY

III. INTRODUCTION

In Phase 2 of this project, we investigate the potential of
deep learning techniques for improving visual-inertial odom-
etry systems. We develop a deep learning architecture for
visual-inertial fusion by implementing three different net-
works: Visual Odometry (VO), Inertial Odometry (IO), and
Visual-Inertial Odometry (VIO). The VO network uses only
visual information, the IO network uses only inertial measure-
ments, and the VIO network combines both visual and inertial
data. These networks are trained to predict the relative pose
between two image frames along with IMU measurements.

We adapt and modify existing deep learning architectures
such as DeepVO and VIONet.The IMU data is preprocessed
and fused with visual information to improve the accuracy of
the predictions. We use a custom loss function to optimize the
network parameters for the best performance.

The effectiveness of the deep learning approach is evaluated
by comparing the results with the ground truth trajectory. This
analysis provides insights into the strengths and limitations of
the VO, IO, and VIO networks for visual-inertial fusion. The
potential benefits of incorporating deep learning techniques for
improving the accuracy of visual-inertial odometry systems are
discussed.

A. Data:

We trained our neural network using the Machine
Hall 02 easy (MH02easy), Machine Hall 03
medium (MH03medium), Machine Hall 04 difficult
(MH04difficult), and Machine Hall 05 difficult
(MH05difficult) subsets of the EuRoC dataset. We
tested our model on the Machine Hall 01 easy (MH01easy)
subset of the dataset.

B. Related Work:

We started our project by performing a thorough analysis
of existing networks that perform well for specific datasets.

One of the pioneering works in this domain is DeepVO,
proposed by Wang et al. [1], which utilized Convolutional



Neural Networks (CNN) to extract features from image se-
quences and Recurrent Neural Networks (RNN) to predict
the pose incrementally. DeepVO demonstrated a significant
improvement over classical approaches, but it relied heavily
on supervised training and large amounts of labeled data.

Clark et al. [2] introduced VINet, which combined the
strengths of CNNs for image feature extraction and LSTMs
for modeling temporal dependencies in IMU measurements.
VINet showed promising results in terms of robustness and
accuracy but was computationally expensive due to the sepa-
rate networks for visual and inertial data processing.

In summary, various deep learning architectures have been
proposed for VIO, such as CNNs for visual feature extraction
and RNNs or LSTMs for modeling temporal dependencies
in inertial data. While these methods show promising results
in terms of accuracy and robustness, they often suffer from
drawbacks such as the need for large amounts of labeled
data, computational complexity, scale ambiguity, or limited
applicability.

C. Data Pre-processing:

The timestamps of images, IMU data, and ground truth data
were not initially aligned. We first addressed the misalignment
between the IMU data and ground truth data, which had
more than 75% overlap. We read the timestamps from their
respective CSV files and removed the timestamps that did not
match between the two datasets. This resulted in two CSV
files (ground truth and IMU data) with matching timestamps.

Next, we tackled the issue of image data timestamps, which
had a rate of roughly 1/10th compared to IMU or ground truth
data and did not align with them. We resolved this by inter-
polating the IMU and ground truth data to obtain their values
at the timestamps corresponding to the image data. During
this process, we removed outlier image timestamps that were
not bound between two IMU/ground truth values and deleted
the corresponding images. We then performed interpolation for
the remaining image timestamps using the closest IMU/ground
truth timestamps and their weighted averages, with weights
based on their proximity to the image timestamps.

After completing the interpolation, we discarded all IMU
and ground truth data except for the timestamps corresponding
to each image timestamp. We performed these preprocessing
steps for all five datasets. For training, we combined MH02,
MH03, MH04, and MH05 into a single file in the same
sequence, allowing us to train the model using all of them.
We utilized the timestamp values in the three CSV files to
track, read, and loop through the input data during training.

Fig. 1. Our TCN Network

Fig. 2. VINet

Fig. 3. Our IO Network



Fig. 4. IO Loss Plot

D. Our Approach:

In our research of deep learning architectures for visual-
inertial odometry systems, we found that most existing net-
works utilizing sequential data relied on LSTMs and similar
networks, which proved to be data-hungry and slow to train.
After consulting with our professor, we began exploring net-
works based on temporal CNNs as a more efficient starting
point.

We developed our own architecture for VIO, which involved
time-distributed layers and was designed to be split into
separate VO and IO networks after training. The network was
trained using normalized stacked stereo-images as a visual
input and IMU data as an inertial input.

Our approach was to create a complete VIO network, train
and deploy it, and then split it into separate VO and IO
parts. The VIO architecture we developed is illustrated in the
diagram below:

After initial experiments with temporal CNNs, we found
that our implementation was slow due to the large amount of
images involved (around 10,000 from five datasets). Running
the network on our CPU was taking a significant amount
of time, which led us to consider alternative approaches for
improving its speed and efficiency.

One idea we came up with was to use regular CNNs for
processing the images. To accomplish this, we focused on
leveraging the relative positions between two images, which
allowed us to discard the sequential data dependence that was
slowing down our implementation. Specifically, we obtained
the relative x, y, z, and quaternion positions between two
images at times t and t+1. We then stacked the left and right
images for each of the two frames, resulting in a total of four
images. This stacked image data was fed into a CNN, which
learned the relative position and orientation between the two
frames.

Fig. 5. Our VO Network

Fig. 6. VO Loss Plot

In figure 5 we can see our VO network architecture.
VONet consists of a series of convolutional layers for feature
extraction from the stacked image data. Specifically, we used a
CNN with three convolutional layers, each followed by batch
normalization, a ReLU activation function, and max-pooling.
These layers were used to extract features from the input
images.

The output of the convolutional layers was then flattened
and fed into a fully connected layer for regression to x, y, and
z coordinates, and quaternions. The architecture of this layer
included two linear layers with ReLU activation functions. The
final output layer consisted of seven nodes representing the
predicted values for the position and orientation of the camera
between the two image frames.

We trained VONet using the following hyperparameters:
Number of epochs: 20
Batch size: 128
Learning rate: 10e-5

L = wp ·
1

N

N∑
i=1

(xi − x̂i)
2 + (yi − ŷi)

2 + (zi − ẑi)
2

+ wq · 1
N

∑N
i=1(qwi

− q̂wi
)2 + (qxi

− q̂xi
)2 + (qyi

− q̂yi
)2

+ (qzi − q̂zi)
2

(1)

We used the mean squared error (MSE) loss function to
optimize the network parameters during training.



By using this approach, we were able to significantly reduce
the amount of compute and time required for processing
the data, while maintaining the accuracy of the system. To
evaluate the performance, we used L2 loss and compared the
results to the ground truth. Through this process, we were
able to develop a more efficient and effective deep learning-
based visual-inertial odometry system that can be trained on
limited data and provide fast inference for real-time navigation
applications.

Fig. 7. VO Output

Next, we implemented Inertial Odometry (IO) network for
our visual-inertial odometry system. As mentioned in the pre-
processing part of our pipeline, we first matched the IMU
timestamps with the ground truth timestamps. We used the
angular velocities in the x, y, and z axis, and linear acceleration
in the x, y, and z axis as the six input features for the network.
Unlike the VO network, which predicts relative values, the IO
network predicts absolute values for the camera’s position and
orientation.

The IO network consisted of a single LSTM layer and a
fully connected layer for regression to the output values. The
LSTM layer was used to capture temporal dependencies in the
input data, while the fully connected layer was used to map
the hidden state of the LSTM to the output values.

We trained the IO network using the following

hyperparameters:
Number of epochs: 100
Batch size: 32
Learning rate: 10e-2

We used the mean squared error (MSE) loss function to
optimize the network parameters during training.

Fig. 8. IO Output

Finally, we implemented a CNN-based VIO network, but
due to time constrains, we were not able to completely debug
it. However, we have included it in our code for reference and
are still trying to debug it to get final results.

E. Problems Faced

During the training of the VO network, we faced the issue
of getting NaN values for the training loss after a certain
number of epochs. This can be caused by various reasons,
such as exploding gradients, vanishing gradients, or numerical
instability. To address this issue, we tried several approaches.

First, we attempted to decrease the learning rate to prevent
the optimizer from overshooting the optimal weights. How-
ever, this did not resolve the issue.

Next, we tried using Xavier weight initialization, which is
a commonly used method for initializing weights in neural
networks. This method helps to avoid the problem of van-
ishing or exploding gradients by keeping the variance of the
activations constant across layers. However, this also did not
help to resolve the issue.

We also attempted to use gradient clipping to prevent the
gradients from becoming too large or too small. This can
help to avoid the problem of exploding gradients, which can
cause NaN values in the training loss. In addition, we added
batch normalization to normalize the inputs to each layer and
stabilize the learning process and in the end resolved the issue.

We faced a lot of issues in getting the plots from the .txt
file. First of all our output values were quite small, thus it
was difficult to visualize it on plot. Further, since the .txt had
some blank values in it which threw a lot of errors and was
difficult to debug. Finally we were able to get some plots from
3D Matplotlib. Also, since we assigned much higher weights
for positions as compared that of the orientations, our plots
came out to be almost linear, which was not good. Our idea
behind doing so was that we need more accurate locations
for the plot, rather than the orientation of the bot. Later, after
discussing with Professor we realized it was not a good idea



to do it as the orientations were also important and were used
to create the trajectory.

we implemented a CNN-based VIO network, but due to time
constrains, we were not able to completely debug it. However,
we have included it in our code for reference and are still
trying to debug it to get final results.

REFERENCES

[1] Wang, S., Clark, R., Wen, H., Trigoni, N. (2017). DeepVO: Towards
end-to-end visual odometry with deep Recurrent Convolutional Neural
Networks. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) (pp. 2043-2050).

[2] Li, R., Wang, S. (2018). Deep visual-inertial odometry based on a 3D
directional grid. arXiv preprint arXiv:1806.05632.

[3] Zhu, A. Z., Thananjeyan, B., Tompson, J., Goldberg, K. (2018).
DeepTIO: A deep thermal-inertial odometry with visual hallucination.
In Proceedings of Robotics: Science and Systems.

[4] Costante, G., Bellocchio, E., Valigi, P., Ricci, E. (2018). Exploring
deep visual-inertial odometry on embedded systems. In Proceedings of
the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (pp. 6099-6106).

[5] Choi, C., Dariush, B. (2018). DenseFusion: 6D object pose estimation
by iterative dense fusion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 3343-3352).

[6] Bloesch, M., Omari, S., Hutter, M., Siegwart, R. (2015). Robust visual
inertial odometry using a direct EKF-based approach. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 298-304).

[7] Radwan, N., Valada, A., Burgard, W. (2018). VLocNet++: Deep mul-
titask learning for semantic visual localization and odometry. IEEE
Robotics and Automation Letters, 3(4), 4407-4414.

[8] Brossard, M., Barfoot, T. D., Peretroukhin, V. (2020). Deep-inertial-
odometry: Learning latent representations for end-to-end visual-inertial
odometry. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA) (pp. 7554-7560).


