
P4 - Visual Inertial Odometry
Uday Sankar

usankar@wpi.edu
Gowri Shankar Sai Manikandan

gmanikandan@wpi.edu
Shaurya Parashar
sparashar@wpi.edu

Abstract—In this project, we aim to investigate and implement
two approaches for stereo visual-inertial odometry: a classical
filter-based method using the MultiState Constraint Kalman Fil-
ter (MSCKF), and a deep learning-based method. In the classical
approach, we integrate the fundamental mathematical principles
of the stereo-MSCKF into a provided base-code framework. In
the deep learning-based approach, we implement three models
that take visual data, inertial data, and visual-inertial fusion data
as input and output the camera pose.

I. PHASE 1 - CLASSICAL VIO

A. Introduction

The primary goal of this phase is to determine the scale from
an image, which allows for depth evaluation. It is well-known
that obtaining depth information from a single camera is
challenging without any prior knowledge of the surroundings.
A more straightforward alternative involves using a stereo
camera with a known pose, where depth can be estimated
by matching features. However, there are some limitations
to this approach, such as the computational complexity and
difficulty of matching, as well as its ineffectiveness in dealing
with motion blur commonly found in robotic applications.

To address these challenges, an Inertial Measurement Unit
(IMU) can be employed. A typical 6-DoF (Degrees of Free-
dom) IMU measures both linear and angular acceleration.
IMUs excel in handling rapid movements and sudden jolts,
where cameras often struggle, but they tend to drift over
time, which is a weakness that cameras can compensate
for. This complementary nature creates an opportunity for a
multi-modal fusion problem, enabling accurate camera pose
estimation and subsequent depth determination.

In this phase of the project, we implement [2] and refer to
[3] for the mathematical model.

Fig. 1: VIO Pipeline

The pipeline involved in this process is shown in Figure 1.
In the given baseline starter code, there were seven functions
that had to be written by us using the concepts discussed in
the paper[3].

B. Data

The data utilized for testing our implementation is the
”Machine Hall 01 easy” (MH 01 easy), a subset of the larger
EuRoC dataset. This data was gathered using a 6-DoF sensor
mounted on a quadrotor, which followed a specific flight path.
In order to obtain the ground truth for the system, a highly
accurate Vicon Motion capture system with sub-millimeter
precision was employed.

C. Implementation

A starter code has been supplied for the development of the
Multi-State Constraint Kalman Filter (MSCKF). To accom-
plish the implementation of the model, we made modifications
to specific functions within the msckf.py Python file. From the
pipeline in Figure 1, it is clear that there are seven functions
to be implemented in the msckf.py file. They are as follows:

1) initialize gravity and bias: In this function, the ini-
tial IMU readings are used to establish the bias and initial
orientation. The first few readings from the IMU message
buffer are averaged to get the angular and linear velocities.
The gyro bias is set using the average angular velocity, while
gravity is determined by the linear velocity. Subsequently, the
normalized gravity vector is incorporated as the IMU state.

By utilizing these two vectors, the initial orientation is set up
to ensure consistency with the inertial frame. The quaternions
are then incorporated as the IMU’s orientation state. The
resulting vector is expressed as follows:

XI =



q̂TIG
b̂Tg
v̂TI
b̂Ta
p̂TI
q̂TC
p̂Tc


(1)

2) batch imu processing: This function processes the
IMU messages within the IMU message buffer based on a
specified time constraint. The process model is executed for
each IMU input within the given time frame, continuing until
the time constraint is reached. Following this, the current
IMU ID is updated to the subsequent state IMU ID. All
remaining unused IMU messages are then removed from the
IMU message buffer.

3) process model: This function calculates the camera
module’s pose based on the latest IMU state update. It takes

the current time, angular velocity (m gyro), and linear accel-
eration (m acc) as input arguments. The error for each IMU
state is computed and represented as follows:

X̃I =



θ̃TIG
b̃Tg
ṽTI
p̃TI
θ̃TC
p̃Tc
b̃Ta


(2)

The linearized continuous dynamics for the error IMU state
are evaluated as:

˙̃XI = FIX̃I +GIn (3)

The discrete transition matrices F and Q are calculated as
shown:

F =



− [ω̂×] −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C
(
q̂TI

)
[â×] 03×3 03×3 −C

(
q̂TI

)
03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(4)

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C
(
q̂TI

)
03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


(5)

The matrix exponential is approximated up to the 3rd order
as follows:

ϕ = I21×21+F (τ)·dτ+1

2
·(F (τ) · dτ)2+1

6
·(F (τ) · dτ)3 (6)

Lastly, the state is propagated, and the new state is pre-
dicted using the 4th-order Runge-Kutta method by calling the
”predict new state” function.

In simpler terms, this function computes the camera mod-
ule’s pose based on the latest IMU state update. The error for
each IMU state and the linearized continuous dynamics for
the error IMU state are evaluated. Discrete transition matrices
are calculated, and the matrix exponential is approximated.
Finally, the state is propagated, and the new state is predicted
using the 4th order Runge-Kutta method.

4) predict new state: This function describes the process
of propagating the state of an Inertial Measurement Unit
(IMU) using a 4th-order Runge-Kutta method. The inputs for
this function are the time step (dτ), gyroscopic data (gyro),
and acceleration data for the given state. In simpler terms, the
function updates the orientation, velocity, and position of an
IMU based on the provided inputs.

First, the error state of the angular velocity (gyro) is normal-
ized. Next, the (dω).matrix is computed using the normalized
angular velocity:

Ω(ω̂) =

[
− [ω̂×] ω
−ωT 0

]
(7)

The current orientation, velocity, and position are obtained
from the IMU state server. With these values, the angular
velocity and acceleration are calculated. The Runge-Kutta
method is then used to approximate the updated state. The
method consists of four steps (k1, k2, k3, k4):

k1 = f(tn, yn) (8)

k2 = f

(
tn +

dτ

2
, yn + k1 · dτ

2

)
(9)

k3 = f

(
tn +

dτ

2
, yn + k2 · dτ

2

)
(10)

k4 = f (tn + dτ, yn + k3 · dτ) (11)

After calculating the approximate orientation, it is converted
to quaternions. The velocity and position of the current IMU
state are updated based on the new approximation. These
updated values are then used as the current state values for
evaluating the next state.

5) state augmentation: In this function, we compute the
state covariance matrix to propagate the uncertainty of the
IMU and camera states. First, we obtain the rotation and
translation values between the IMU and the camera. Then,
we add a new camera state to the state server using the initial
IMU and camera states.

Next, we update the state augmentation Jacobian, JI , as
follows:

JI =

 C(q̂IG) 03×9 03×3

− (C(q̂IG))
T
[p̂c×] 03×9 I3

03×3 I3

 (12)

We then resize the state covariance matrix and propagate
the covariance of the IMU state. The full propagation of the
uncertainty is represented as:

Pk+1|k =

[
PIIk+1|k ϕkPICk|k(

ϕkPICk|k

)T
PCCk|k

]
(13)

Finally, the augmented covariance matrix, Pk|k, is given as:

Pk|k =

[
J21+6N

J

]T [
P 21+6N
k|k
J

]
(14)

We then update the state covariance in the server.

In simpler terms, this function calculates the uncertainty of
the IMU and camera states using the state covariance matrix.
The state augmentation Jacobian is updated, and the covari-
ance of the IMU state is propagated. Finally, the augmented
covariance matrix is computed and used to update the state
covariance in the server.

6) add feature observations: The following points de-
scribe

1) Obtain the feature msg as the input for this function.
2) Get the current IMU state ID.
3) Evaluate the number of features.
4) Append each feature one by one in the feature msg to

the map server, if it is not already present in the map
server.

5) Maintain a count of the number of features tracked.
6) Update the map server for every given state, tracking all

the features.
7) Calculate the tracking rate as the ratio of the number

of tracked features to the number of current features
available.

7) measurement update: In order to update the state es-
timates, a measurement model has been implemented. A
residual r that depends linearly on the state errors is defined
as follows:

r = HX̃ + noise

In the aforementioned equation, H represents the measure-
ment Jacobian matrix, while the noise component signifies a
zero-mean, white, uncorrelated state error. We have employed
an estimated Kalman filter structure in this context. Initially,
we verify whether the existing H and r values are zero.

Subsequently, we attempt to minimize the complexity of
the Jacobian matrix through the application of QR decompo-
sition, which serves to decrease the computational demands as
outlined below:

Hx =
(
Q1 Q2

)(Th

0

)
In this case, Q1 and Q2 represent unitary matrices, with

their columns constituting bases for the range and nullspace
of Hx, respectively. Moreover, TH denotes an upper triangular
matrix. Following this, we determine the Kalman gain by
employing the subsequent formula:

K = PTT
H(THPTT

H +Rn)
−1

Here, K denotes the Kalman gain, P symbolizes the state
covariance matrix, TT

H represents the upper triangular matrix,
and Rn stands for the covariance matrix of noise. After
determining the Kalman gain, we proceed to compute the state
error as follows:

∆X = Krn

Utilizing the calculated state error, the IMU state is up-
dated initially, followed by adjustments to the camera states.

Ultimately, the state covariance undergoes an update, and the
covariance matrix is adjusted to achieve symmetry.

D. Results

Since we faced difficulties regarding the visualization using
Pangolin module, we got the visualization video from Irakli
Grigolia’s personal computer.

Fig. 2: Trajectory for EuRoC MH 01 easy

II. PHASE 2 - DEEP VIO

A. Introduction
In the previous phase, we implemented a classical filter-

based approach for stereo-visual inertial odometry. Now the
question is whether this can be done using deep learning.
Therefore, in this phase, we aim to develop a deep-learning
architecture that predicts the relative pose between two image
frames, along with IMU measurements. The methodology is
to implement three models that take in visual data, inertial
data, and visual-inertial fusion data, each to return the pose of
the drone under study.

B. Data
The approach that we had to take was to train all three

models with Machine Hall 02 Easy, Machine Hall 03 Medium,
Machine Hall 04 Medium, Machine Hall 04 difficult, and
Machine Hall 05 difficult subsets of the EuRoC dataset. The
EuRoC dataset involves two forms of data - visual and inertial
data. The visual data is collected using two synchronized
global shutter grayscale cameras at 20 frames per second at
a resolution of 752 x 480. Although the dataset involves two
environments, including a large ’Machine Hall’ with sparse
features and two cluttered ’Vicon Rooms’ with rich texture,
the one that is being considered for training is the Machine
Hall subset. Finally, the ground truth needed for supervised
learning is obtained using a Vicon motion capture system
which provides 6-DoF pose information at a rate of 200Hz.

However, we faced a major issue when it came to data han-
dling. The data was temporally inconsistent with the ground
truth data. One solution that we came up with to address
this problem was to subject the data to interpolation and the
alignment of timestamps. We tried to implement two types
of interpolation techniques - linear interpolation and spline

interpolation. Linear interpolation involves the estimation
of values of missing data points by drawing a straight line
between two neighboring data points and calculating the value
of the missing point along that line.

Fig. 3: Linear Interpolation

Similarly, spline interpolation involves the estimation of
values of missing data points by fitting a piecewise polynomial
function to the available data points and interpolating to
estimate the missing points.

Fig. 4: Spline Interpolation

But unfortunately, we were not able to come up with
a reliable implementation of both of these techniques, as
the interpolated output was still not matching temporally.
Since training with less data seemed better than training with
wrongly matched data, we decided to go forward with a simple
matching technique where we extract data points that have
synchronized matching with the ground truth. Although not a
fancy solution, this method worked for us in the models that
we implemented.

C. Visual Odometry
So the first model that we worked with was the visual

odometry model, which takes in stereo camera images and
returns the camera pose as output. The first idea for a model
to tackle this task we tried to implement was the Feature
Pyramid Network (FPN)[1]. The FPN is a neural network

architecture commonly used in computer vision tasks such
as object detection and semantic segmentation, which we
planned to utilize for our purpose. FPN constructs a pyramid
of features from the input image, with features at different
scales corresponding to different levels of abstraction. The
bottom-up pathway extracts feature from the input image
using a convolutional neural network (CNN), while the top-
down pathway combines these features to generate a set of
feature maps at different scales. The resulting feature pyramid
can be used for various tasks by applying region proposal
networks (RPNs) to each level of the pyramid and aggregating
the proposals to generate a final set of object detections.
FPN would be preferable because it allows for the effective
handling of objects of varying sizes and achieves state-of-the-
art performance on a variety of computer vision tasks.

Fig. 5: Feature Pyramid Network

But we ended up not using this network because we had
issues while training the data. The losses seemed to increase
which is not ideal. So we decided to go for a simpler approach
which involved ResNet34 backbones connected with a fully
connected layer in the end (Fig 6). The output obtained from
the fully connected layer, which is a 7 x 1 vector will be the
pose of the camera.

Fig. 6: Visual Odometry Network

Now since the ground truth is the drone pose in the world
frame and for training we needed the pose in the body frame,
we performed a transformation on the world pose to convert
it from the world frame to the body frame.

t′t+1 = Rt(tt+1 − tt)

R′
t+1 = (Rt+1)

−1Rt

where R, t are the rotation matrix and translation vector
obtained from quaternions with respect to the world frame,
and R′, t′ with respect to the body frame. Once the model
is trained, during inference, since we are getting output poses
with respect to the body frame, we integrate these poses over
time to get the poses in the world frame.

tt+1 = tt +Rtt
′
t+1

Rt+1 = RtR
′
t+1

As discussed in the earlier data section, a major problem that
we faced in this section was the temporal inconsistency of the

data with its ground truth. We went with a common timestamp
value-based method in order to get the training initiated. Upon
training the model using an MSE loss function over 20 epochs,
we got the training losses as shown in Figure 7.

Fig. 7: Training Losses in Visual Odometry Network

For the visualization purpose, we were planning to use the
rpg trajectory evaluation[4] from the Robotics and Percep-
tion Group of the University of Zurich repository. Since the
problems we faced earlier and time constraints led to us not
being able to properly visualize the test output for the visual
odometry network, we have only included the visualization for
the inertial odometry network which is the next section.

D. Inertial Odometry

For this task, we went with an LSTM (Long Short-Term
Memory) based model which is followed by a fully connected
layer. Fortunately, we were able to get the training initiated
with the first model that we tried.

Fig. 8: Inertial Odometry Network

Upon training the model for an MSE loss function over 20
epochs, the losses that we obtained are as follows.

Fig. 9: Training Losses in Inertial Odometry Network

Upon inspection, we can see that although training loss
is decreasing over the epochs, the validation loss keeps on
increasing in an inconsistent manner. We suspect that the
model is most probably overfitting to the data. We also suspect
this happening due to data handling mistakes that we might
have overlooked in pre-processing part. Regardless, we had to
proceed with the visualization due to time constraints.

For visualization, we were able to get the
rpg trajectory evaluation repository to work for this
particular model. The various errors that we obtained are
shown in the figures below.

Fig. 10: Relative Yaw Error

Fig. 11: Relative Translation Error

Fig. 12: Rotation Error

Finally, the top and side views of the trajectories obtained
using visualization are shown below.

Fig. 13: Top View of Trajectory

Fig. 14: Side View of Trajectory

Upon inspection, it is obvious that the visualization did
not come out as expected. Even the ground truth is being
shown to be very different from what it is supposed to be.
We suspect that, as discussed earlier, this is happening due to
small mistakes that we overlooked in the data handling part
of pre-processing. We intend to correct these mistakes and
fine-tune the trajectories as per our needs in the future.

E. Visual-Inertial Odometry

Now finally the fusion of both these concepts is the com-
bined Visual-Inertial Odometry network. Unfortunately, we
were not able to complete a working model within the given
time. But we will talk about how we intended to complete this
network in the report. The network we intended to construct
is shown below.

Fig. 15: The Visual-Inertial Odometry Network

So, the visual data will be processed by the Visual Odometry
Network and the IMU data will be processed by the Inertial
Odometry Network. The 7 x 1 vectors indicating the poses
obtained from each model will be passed through a fully
connected layer to get the refined pose. The implementation
of this combined network is one of the works for the future.

III. CONCLUSION

From the study, it is clear that the MSCKF implementation
for Visual-Inertial Odometry is an excellent method of per-
forming the task at hand. The output obtained is very close
to the ground truth. To have a deep learning model that can
compete with this implementation, more time and effort need
to be put into fine-tuning the construction of the network. This
is something our team hopes to accomplish in the future.

REFERENCES

[1] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariha-
ran, and Serge Belongie. Feature pyramid networks for object detection,
2017.

[2] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proceedings 2007
IEEE international conference on robotics and automation, pages 3565–
3572. IEEE, 2007.

[3] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu,
Yash Mulgaonkar, Camillo J Taylor, and Vijay Kumar. Robust stereo
visual inertial odometry for fast autonomous flight. IEEE Robotics and
Automation Letters, 3(2):965–972, 2018.

[4] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative
trajectory evaluation for visual(-inertial) odometry. In IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), 2018.

