RBE/CS549: Project 4 -
Classical Visual-Inertial Odometry

Sanya Gulati
sgulati@wpi.edu

I. INTRODUCTION

In this project, we implemented the seven functions of stereo
Multi-State Constraint Kalman Filter (MSCKF)[1]. As this
paper is an extension of the original MSCKF paper[2], we
have taken it as a reference.

II. PHASE 1: STEREO MSCKF
A. Initialize gravity and bias

The gravity and gyroscope bias are initialized with the first
200 messages from IMU when the robot is placed statically.
The gyroscope bias by is initialized as the average of these 200
gyroscope readings. The gravity ¢ is initialized as [0, 0, gnorm]>
and g,orm is the norm of the first 200 accelerometer readings.
The orientation is initialized as the quaternion from —g to

gTLO'I"’n’L'
B. Batch imu processing

When we receive a new feature, we want to first process
all the IMU messages received prior to the new feature’s time
stamp. For every IMU message within the IMU message buffer
that’s received prior to the feature time stamp, we update our
state estimation using the process model.

C. Process model

We model the IMU system model as a continuous-time in
equation 1.

Lilt) = S0()al)

bg(t) = nwg(t)a

Gor(t) =% a(t), (1
ba(t) = Nuwa(t),

Where Lg(t) is the unit quaternion describing the
rotation from global frame {G} to IMU frame {I}.
w(t) = [wg,wy,w;]T is the rotational velocity in IMU frame,
and

Q(w) = {__Lﬁj ‘;;})
0 —Ww, Wy

lwx | = | w, 0 —ws 3)
—Wy Wy 0

Siyuan Huang
shuang4 @wpi.edu

Yijia Wu
ywu2l @wpi.edu

The gyroscope and accelerometer measurements, w,, and
a,, can be written as

W = w + by + 1y @)

am =G R(Pa— g+ 2|wax] “or +2|wax] *“pr) + ba + na

4)

where L R is the rotation matrix calculated from quaternion

L Then apply expectation operator on equation 1 we obtain
the equations for propagating IMU state estimates:

A 1 NS
Ga(t) = 5A@e)T,
Bg = 03x1,

Gor = CFa — 2|wax |“or + |wax |*Cpr +€ g, ©)

The linearized continuous-time model for IMU error-state
is:
Ximv = FX + Gy (7

Where F' and G are

|@x] —I3 Ozx3 033 033
03x3 O3x3 0O3x3 03x3 03x3
—C(La)Tax] 0sxs 03x3 —C(LGT 0343
F= 03x3 03x3 O3x3 03x3 03x3
03x3 O3x3 I3 O3x3 03x3
O3x3 O3x3 Oszx3 O3x3 O3x3
O3x3 O3x3 O3xs O3x3 033]
®)
—1I3 O3x3 03x3 03x3
O3x3 I3 03x3 03x3
G = |03x3 0O3x3 —CE)T 0Osxs)]
03x3 O3x3 03x3 I3
03x3 0O3x3 03x3 03x3

D. Predict new state

Every time we received a new IMU measurement, we use
4th order Runge-Kutta numerical integration to propagate our
estimation for the next state.

E. State augmentation

In the state_augmentation function, we update the camera
position “pc and orientation 8(] with the last IMU state and
augment the state covariance matrix P.

The pose of the camera can be computed as,

G

pe =% pr+C(Ga)" "pe (10)
G1=5 q®Gq (11)
J=1[Ji Ogxen] (12)
J) = [C(r9) Osx9 Osxz I3 03><3:|
IC(L)T Tpc «] Osxe I3 O3xz I3
(13)
I I r
P = { 21}-6N] P { 21}6N] (14)

F. Add feature observations

This function can update the detected feature in the latest
frame to the feature map. Each feature will be added to the
feature map with its feature ID and current state ID. The
feature that was collected with state ID 7 and feature ID j
is represented as

) . . . 4T
i _ |, J J J
Z; = [ui,l Vi1 Ui Ui,2} 15)

1 represents the left camera, and 2 represents the right camera.

G. Measurement update

The measurement_update function takes measurement ma-
trix A and residual matrix r as input to compute the Kalman
gain K, and then updates the IMU state X1, camera state,
and state covariance matrix P.

The measurement matrix H is a matrix with block rows
H j), j = 1..L. L is the number of all detected features. If
the number of row (feature) is larger than the number of state
X components (21), we employ QR decomposition for the
matrix H. With the reduced mode of numpy.linalg.qr function,
we can directly get Q) and Ty.

H=[Q Q] [Tg] (16)

The matrix) can then be used to compute residual r,, as

r=QTr=TyX +n, a7)

R,, is the covariance matrix of the noise vector n,. o2, is
the noise of observation. ¢ is the number of rows of matrix

Q.

R, :O'Z‘Zmquq (18)

The Kalman gain K can be computed with the following
equation

K = PTE(Ty PTE + R,) = 1) (19)

However, because the matrix inverse computation is unsta-
ble, we can change it as solving the Az = b problem, x is
KT, Ais S=TyPTE + R, and b is Ty P. A is S because
S = ST, both matrix P and R, are symmetric.

SK" =TyP (20)
After getting the Kalman gain K, we can use it to compute
the correction for state AX as

AX =Kr, 2D

Finally, the state covariance matrix P can be updated with

Piyiji+1 = Texx — KTg) Py, (22)

H. Trajectory error evaluation

In this section, we plot the error between Ground Truth
and Estimate Trajectory with the rpg_trajectory_evaluation
toolbox[3]. The absolute median trajectory error (ATE) is
0.06910338087405558 m and the root mean square translation
error (RMSE) is 0.081715762810781 m.

Position Drift [mm]

Orient. err. [deg]
|
2
8
1 E 5 %%

0 10 20 30 40 50 60 70
Distance [m]

Fig. 2: Rotation Error

Estimate

1o dds

T T
8.06 16.12

Translation error [m]

T T T
24.18 32.25 40.31

Distance traveled [m]

Fig. 3: Relative Translation Error

150 4
o0
<
=
§ 1007 Estimate
@
£ 501
0

24.18 32.25 40.31

Distance traveled [m]

8.06 16.12

Fig. 4: Relative Yaw Error

—— Estimate
—— Groundtruth

z [m]

x [m]

Fig. 5: Trajectory Side View

III. PHASE 2: DEEP VIO

In this phase, we explored using deep learning approach
to solve Visual Inertial Odometry. We first preprocessed the
dataset for time stamp alignment and then used the pro-
cessed dataset to train Visual-only odometry network and
Inertial-only odometry network. We also proposed a net-
work architecture for fusing visual and inertial signals to
obtain odometry. However, because of time constraints and
unsolved issues in our VO and IO network, we didn’t get a
chance to actually train the VIO network. We also evaluated
our odometry prediction result with the ground truth using
rpg_trajectory_evaluation toolbox similarly as we have done
for Phase 1.

A. Data preprocessing

The dataset we used to train and test our models is the
Machine Hall dataset in the EUROC dataset. In this dataset,
camera frames are given at 20Hz, IMU frames are given at
200Hz, and the ground truth captured by the VICON motion
capture system is provided at 200Hz. We found that all three
sources of the data are time-stamped but not aligned. In order
to use the dataset, we had to find the common beginning and
common end time stamps to crop out and align the data for
later use. Figure 7 is an image illustration of the process.

Another crucial data preprocessing step that we missed and
didn’t realize earlier was that all the positions in the ground
truth data are in the world frame. In order to use the ground
truth data, we have to convert it into a body frame for relative
poses. We believe that this is the major reason why our
networks failed. Unfortunately, we didn’t realize this earlier
thus we didn’t have time to fix this in our submission.

B. Deep VO architecture

We designed the architecture as shown in Fig. 8 based on
the pose estimator network in [5]. The input is the stack of

—— Estimate
—— Groundtruth

Fig. 6: Trajectory Top View

Final Data Used
I Y Y O I v

MU 200Hz |

[T T[T TTTT

Camera 20Hz [[1 1

Ground Truth 20051z N N Y N N

USSR — Algnea Tmostamp Algnoa Timostamp

Fig. 7: Data Preprocessing for time stamp alignment

two images in time (t-1) and t. The network architecture starts
with 10 2D convolution layers, follows by a max pool layer
and some fully connected linear layers which finally output
the estimated frame-to-frame position and orientation. The
quaternion estimation is normalized to be a unit quaternion.

64, 7x7, 2
128, 5x5, 2

256, 5x5, 2
512, 3x3, 2
1024, 3x3, 1

512, 3x3,1
1024, 3x3, 2

512, 3x3, 1

256, 3x3, 1
512, 3x3, 2

Fig. 8: Deep VO architecture

C. Deep 10 architecture

We used Temporal Convolution based network architecture
to design our Inertial odometry network. As shown in Figure
9, given 200 frames of IMU data, which contains 6 channels
linear and angular accelerations, we use our network to predict

the relative pose between the last 100 frames as 7 channels
outputs, 3 for translation and 4 for orientation in quaternion.
The input data first goes through 8 connected 1D convolution
layers with 265 channels and a kernel size of 2. The output
is flattened and fed to two more fully connected layers to get
the final 7 x 1 desired output.

(7x1)

~ 3 ~N N ~N 3 ~N ~N

o [o 3 o [o o

N N N IN N NININ

n » n 2 n » » »

EEEEEEEE ro

elative

Q Q Q Q Q Q Q Q c -

Isl\guu22tca9 X ¥ K e e % e X e | Translation and
a S | | B 1 g Orientation

(6 x 200) 2 |2 2 |2 |2 2 |2 g =

c c c = c = c c

C @ @ @ © @ @ @

= = = = = = < <

o O o o o o o o

o 9@ © o 9 o g o

0 el 0 'l w0 0 I'e] w0

N N ~N N N N N N

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Fig. 9: Deep IO architecture

D. Deep VIO architecture

The Deep VIO architecture takes flattened outputs from
VO and IO as inputs, concatenates them, and similar to the
architecture of 10, we add two linear layers, and finally predict
the final output, the orientation (gq), and the translation (7).

64, 7‘11. 2

Concatenate

IMU Data
Sequence N
(6 x 200)

mdmh:l(lmdiuz

256 channels, Kernel size 2

266 channels, Kernel size 2

256 channels, Kernel size 2

266 channels, Kernel size 2
i

i
5
;
8

Fig. 10: Deep VIO architecture

E. Loss function

The loss function was chosen to be a weighted combination
of position error L, and orientation error L, of the frame-to-
frame pose estimation.

The position error L, is the L2 norm of the estimated
position p* and ground truth position p.

Ly =|lp = p"l2 (23)
The orientation error L, is calculated as
Le=)_[1-1lg-q"[lll (24)

q is the ground truth quaternion. ¢* is the normalized
estimated quaternion. If they are the same, the error should
be zero.

Finally, they are combined with a scale factor 8 because
the value of position error is normally larger than the value
of orientation error. This value change between dataset. We
chose =150 according to the loss value ratio of our training
set.

L=1L,+BL, (25)

F. Training and testing pipeline

We have implemented, trained, and tested the Deep VO and
IO architecture. The training dataset contains the trajectory of
Machine Hall 02-05 with both stereo camera, IMU reading,
and ground truth trajectory from Vicon. The networks were
trained with a batch size of 32, Adam optimizer with 5;=0.9,
£2=0.999, and an initial learning rate of 0.0001 with 0.5 decay
rate per 300 iterations (almost an epoch). After training, we
use the saved model to test the Machine Hall 01 dataset. The
result is shown in the next section.

G. Trajectory Error Evaluation

The Error between Ground Truth and Estimate Tra-
jectory using the rpg_trajectory_evaluation toolbox[3] is
shown below. The absolute median trajectory error (ATE) is
123.4665558045848 m and the root mean square translation
error (RMSE) is 128.34377138779902 m. The average frame-
to-frame translation error is 0.0011 m and the average quater-
nion error is 1.8320e-05. However, though the frame-to-frame
error is small when they were accumulated, the final absolute
error is too large.

—— Estimate
—— Groundtruth

Fig. 11: Trajectory Side View

REFERENCES

[1] K. Sun et al., “Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight.” arXiv, 2017. doi: 10.48550/ARXIV.1712.00036.

A. 1. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, Apr. 2007.
doi: 10.1109/robot.2007.364024.

Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2018.
doi: 10.1109/ir0s.2018.8593941.

Weber, D., Giihmann, C., Seel, T. (2020). Neural Networks Versus
Conventional Filters for Inertial-Sensor-based Attitude Estimation. arXiv.
https://doi.org/10.48550/ARXIV.2005.06897

—

[2

—

3

=

[4

—

Estimate
—— Groundtruth

x [m]

Fig. 12: Trajectory Top View

4000 A
E 2000
£
EIRE
-
-2 —2000
& —1000

0 10 20 30 4‘0 50 60 70 &0
Distance [m]
Fig. 13: Translation Error
w100
g
£ o
5 —100 1
0 lb 20 3‘0 4‘0 5‘0 6‘0 70 8‘0
Distance [m]
Fig. 14: Rotation Error

1251 Estimate
=
=100
o
2
8 754
g
8
5 5.0
g
ﬁ 2.5 1

00 1 T T T T T

8.06 16.12 24.18 32.25 40.31

Distance traveled [m]

Fig. 15: Relative Translation Error

Yaw error [deg]

Estimate
150 4
100 4
N % é
0
8.06 16.12 24.18 32.25 40.31
Distance traveled [m]
Fig. 16: Relative Yaw Error
scale
0 10 20 30 40 50 60 0 80

Distance [m]

Fig. 17: Scale Error

[5] R. Li, S. Wang, Z. Long, and D. Gu, “UnDeepVO: Monocular Visual

Odometry through Unsupervised Deep Learning.” arXiv, 2017. doi:
10.48550/ARXIV.1709.06841.

