
RBE/CS549: Project 4 -
Classical Visual-Inertial Odometry

Sanya Gulati Siyuan Huang Yijia Wu
sgulati@wpi.edu shuang4@wpi.edu ywu21@wpi.edu

I. INTRODUCTION

In this project, we implemented the seven functions of stereo
Multi-State Constraint Kalman Filter (MSCKF)[1]. As this
paper is an extension of the original MSCKF paper[2], we
have taken it as a reference.

II. PHASE 1: STEREO MSCKF

A. Initialize gravity and bias

The gravity and gyroscope bias are initialized with the first
200 messages from IMU when the robot is placed statically.
The gyroscope bias bg is initialized as the average of these 200
gyroscope readings. The gravity g is initialized as [0, 0, gnorm],
and gnorm is the norm of the first 200 accelerometer readings.
The orientation is initialized as the quaternion from −g to
gnorm.

B. Batch imu processing

When we receive a new feature, we want to first process
all the IMU messages received prior to the new feature’s time
stamp. For every IMU message within the IMU message buffer
that’s received prior to the feature time stamp, we update our
state estimation using the process model.

C. Process model

We model the IMU system model as a continuous-time in
equation 1.

I
Gq̇(t) =

1

2
Ω(ω(t))IGq(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

G a(t),

ḃa(t) = nwa(t),
G(̇p)I(t) =

G vI(t)

(1)

Where I
Gq(t) is the unit quaternion describing the

rotation from global frame {G} to IMU frame {I}.
ω(t) = [ωx, ωy, ωz]

T is the rotational velocity in IMU frame,
and

Ω(ω) =

[
−⌊ω×⌋ ω
−ωT 0

]
(2)

⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3)

The gyroscope and accelerometer measurements, ωm and
am can be written as

ωm = ω + bg + ng (4)

am =I
G R(Ga−G g+2⌊ωG×⌋GvI +2⌊ωG×⌋2GpI) + ba +na

(5)
where I

GR is the rotation matrix calculated from quaternion
I
Gq Then apply expectation operator on equation 1 we obtain
the equations for propagating IMU state estimates:

I
G
˙̂q(t) =

1

2
Ω(ω̂I

G)q̂,

˙̂
bg = 03×1,
G ˙̂vI = CT

q̂ â− 2⌊ωG×⌋Gv̂I + ⌊ωG×⌋2Gp̂I +G g,

˙̂
ba = 03×1,
G ˙̂pI =G v̂I

(6)

The linearized continuous-time model for IMU error-state
is:

˙̃
XIMU = FX̃ +GnIMU (7)

Where F and G are

F =

⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGq̂)
T ⌊â×⌋ 03×3 03×3 −C(IGq̂)

T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

(8)

G =

−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGq̂)
T 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

 (9)

D. Predict new state

Every time we received a new IMU measurement, we use
4th order Runge-Kutta numerical integration to propagate our
estimation for the next state.

E. State augmentation

In the state augmentation function, we update the camera
position GpC and orientation C

Gq with the last IMU state and
augment the state covariance matrix P .

The pose of the camera can be computed as,
GpC =G pI + C(CGq)

T IpC (10)
C
Gq =C

I q ⊗I
G q (11)

J =
[
J1 O6×6N

]
(12)

J1 =

[
C(ICq) 03×9 03×3 I3 03×3

⌊C(IGq)
T IpC ×⌋ 03×9 I3 03×3 I3

]
(13)

Pk|k =

[
I21+6N

J

]
PK|K

[
I21+6N

J

]T
(14)

F. Add feature observations

This function can update the detected feature in the latest
frame to the feature map. Each feature will be added to the
feature map with its feature ID and current state ID. The
feature that was collected with state ID i and feature ID j
is represented as

Zj
i =

[
uj
i,1 vji,1 uj

i,2 vji,2

]T
(15)

1 represents the left camera, and 2 represents the right camera.

G. Measurement update

The measurement update function takes measurement ma-
trix H and residual matrix r as input to compute the Kalman
gain K, and then updates the IMU state XIMU , camera state,
and state covariance matrix P .

The measurement matrix H is a matrix with block rows
H(j), j = 1...L. L is the number of all detected features. If
the number of row (feature) is larger than the number of state
X components (21), we employ QR decomposition for the
matrix H . With the reduced mode of numpy.linalg.qr function,
we can directly get Q and TH .

H =
[
Q Q2

] [TH

O

]
(16)

The matrix Q can then be used to compute residual rn as

rn = QT r = THX̃ + nn (17)

Rn is the covariance matrix of the noise vector nn. σ2
im is

the noise of observation. q is the number of rows of matrix
Q.

Rn = σ2
imIq×q (18)

The Kalman gain K can be computed with the following
equation

K = PTT
H(THPTT

H +Rn)
(− 1) (19)

However, because the matrix inverse computation is unsta-
ble, we can change it as solving the Ax = b problem, x is
KT , A is S = THPTT

H +Rn, and b is THP . A is S because
S = ST , both matrix P and Rn are symmetric.

SKT = THP (20)

After getting the Kalman gain K, we can use it to compute
the correction for state ∆X as

∆X = Krn (21)

Finally, the state covariance matrix P can be updated with

Pk+1|k+1 = (Ik×k −KTH)Pk|k (22)

H. Trajectory error evaluation

In this section, we plot the error between Ground Truth
and Estimate Trajectory with the rpg trajectory evaluation
toolbox[3]. The absolute median trajectory error (ATE) is
0.06910338087405558 m and the root mean square translation
error (RMSE) is 0.081715762810781 m.

Fig. 1: Translation Error

Fig. 2: Rotation Error

Fig. 3: Relative Translation Error

Fig. 4: Relative Yaw Error

Fig. 5: Trajectory Side View

III. PHASE 2: DEEP VIO

In this phase, we explored using deep learning approach
to solve Visual Inertial Odometry. We first preprocessed the
dataset for time stamp alignment and then used the pro-
cessed dataset to train Visual-only odometry network and
Inertial-only odometry network. We also proposed a net-
work architecture for fusing visual and inertial signals to
obtain odometry. However, because of time constraints and
unsolved issues in our VO and IO network, we didn’t get a
chance to actually train the VIO network. We also evaluated
our odometry prediction result with the ground truth using
rpg trajectory evaluation toolbox similarly as we have done
for Phase 1.

A. Data preprocessing

The dataset we used to train and test our models is the
Machine Hall dataset in the EUROC dataset. In this dataset,
camera frames are given at 20Hz, IMU frames are given at
200Hz, and the ground truth captured by the VICON motion
capture system is provided at 200Hz. We found that all three
sources of the data are time-stamped but not aligned. In order
to use the dataset, we had to find the common beginning and
common end time stamps to crop out and align the data for
later use. Figure 7 is an image illustration of the process.

Another crucial data preprocessing step that we missed and
didn’t realize earlier was that all the positions in the ground
truth data are in the world frame. In order to use the ground
truth data, we have to convert it into a body frame for relative
poses. We believe that this is the major reason why our
networks failed. Unfortunately, we didn’t realize this earlier
thus we didn’t have time to fix this in our submission.

B. Deep VO architecture

We designed the architecture as shown in Fig. 8 based on
the pose estimator network in [5]. The input is the stack of

Fig. 6: Trajectory Top View

Fig. 7: Data Preprocessing for time stamp alignment

two images in time (t-1) and t. The network architecture starts
with 10 2D convolution layers, follows by a max pool layer
and some fully connected linear layers which finally output
the estimated frame-to-frame position and orientation. The
quaternion estimation is normalized to be a unit quaternion.

Fig. 8: Deep VO architecture

C. Deep IO architecture

We used Temporal Convolution based network architecture
to design our Inertial odometry network. As shown in Figure
9, given 200 frames of IMU data, which contains 6 channels
linear and angular accelerations, we use our network to predict

the relative pose between the last 100 frames as 7 channels
outputs, 3 for translation and 4 for orientation in quaternion.
The input data first goes through 8 connected 1D convolution
layers with 265 channels and a kernel size of 2. The output
is flattened and fed to two more fully connected layers to get
the final 7× 1 desired output.

Fig. 9: Deep IO architecture

D. Deep VIO architecture

The Deep VIO architecture takes flattened outputs from
VO and IO as inputs, concatenates them, and similar to the
architecture of IO, we add two linear layers, and finally predict
the final output, the orientation (q), and the translation (T).

Fig. 10: Deep VIO architecture

E. Loss function

The loss function was chosen to be a weighted combination
of position error Lp and orientation error Lq of the frame-to-
frame pose estimation.

The position error Lp is the L2 norm of the estimated
position p∗ and ground truth position p.

Lp = ||p− p∗||2 (23)

The orientation error Lq is calculated as

Lq =
∑

||1− ||q · q∗|||| (24)

q is the ground truth quaternion. q∗ is the normalized
estimated quaternion. If they are the same, the error should
be zero.

Finally, they are combined with a scale factor β because
the value of position error is normally larger than the value
of orientation error. This value change between dataset. We
chose β=150 according to the loss value ratio of our training
set.

L = Lp + βLq (25)

F. Training and testing pipeline

We have implemented, trained, and tested the Deep VO and
IO architecture. The training dataset contains the trajectory of
Machine Hall 02-05 with both stereo camera, IMU reading,
and ground truth trajectory from Vicon. The networks were
trained with a batch size of 32, Adam optimizer with β1=0.9,
β2=0.999, and an initial learning rate of 0.0001 with 0.5 decay
rate per 300 iterations (almost an epoch). After training, we
use the saved model to test the Machine Hall 01 dataset. The
result is shown in the next section.

G. Trajectory Error Evaluation

The Error between Ground Truth and Estimate Tra-
jectory using the rpg trajectory evaluation toolbox[3] is
shown below. The absolute median trajectory error (ATE) is
123.4665558045848 m and the root mean square translation
error (RMSE) is 128.34377138779902 m. The average frame-
to-frame translation error is 0.0011 m and the average quater-
nion error is 1.8320e-05. However, though the frame-to-frame
error is small when they were accumulated, the final absolute
error is too large.

Fig. 11: Trajectory Side View

REFERENCES

[1] K. Sun et al., “Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight.” arXiv, 2017. doi: 10.48550/ARXIV.1712.00036.

[2] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, Apr. 2007.
doi: 10.1109/robot.2007.364024.

[3] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2018.
doi: 10.1109/iros.2018.8593941.

[4] Weber, D., Gühmann, C., Seel, T. (2020). Neural Networks Versus
Conventional Filters for Inertial-Sensor-based Attitude Estimation. arXiv.
https://doi.org/10.48550/ARXIV.2005.06897

Fig. 12: Trajectory Top View

Fig. 13: Translation Error

Fig. 14: Rotation Error

Fig. 15: Relative Translation Error

Fig. 16: Relative Yaw Error

Fig. 17: Scale Error

[5] R. Li, S. Wang, Z. Long, and D. Gu, “UnDeepVO: Monocular Visual
Odometry through Unsupervised Deep Learning.” arXiv, 2017. doi:
10.48550/ARXIV.1709.06841.

