RBE 549 Project 4 Phase 2:
Deep Visual Inertial Odometry

Aabha Tamhankar
Masters in Robotics Engineering
Worcester Polytechnic Institute
astamhankar@wpi.edu

Abstract—This paper presents a deep learning-based approach
to compute visual and inertial odometry for a Micro Aerial
Vehicle (MAV) using the publicly available Euroc dataset. We
propose a novel architecture that combines convolutional neural
networks (CNN) and long short-term memory (LSTM) networks
to learn spatiotemporal features from the visual and inertial data
streams, respectively. The CNN and LSTM networks are trained
independently on the visual and inertial data streams, and the
outputs can be fused using a dense neural network to estimate the
MAV’s pose. We evaluate the proposed approach on the Euroc
dataset.

I. INTRODUCTION

In recent years, there has been a significant increase in
the use of unmanned aerial vehicles (UAVs) in various ap-
plications, such as mapping, surveillance, and search and
rescue missions. Accurate and robust estimation of the UAV’s
position and orientation is crucial for the success of these
applications. Visual and inertial odometry (VIO) is a popular
technique for estimating the pose of a UAV using camera and
inertial sensor measurements. However, VIO can suffer from
drift and instability due to various factors such as sensor noise
and calibration errors. To address these issues, deep learning
methods have been applied to improve VIO performance by
leveraging the power of neural networks to learn robust feature
representations and model complex nonlinear relationships.
Due to advances in robotics in the field of aerial vehicles,
state estimation is crucial for gaining pose and achieving
stability of the robot while in flight. The combination of visual
information from cameras and measurements from an Inertial
Measurement Unit (IMU) is referred to as Visual Inertial
Odometry (VIO)[1]. This project presents an implementation
of VIO using deep learning methods. Our approach combines
visual and inertial measurements using a deep neural net-
work architecture that takes advantage of the complementary
information provided by these sensors. Specifically, we use
a convolutional neural network (CNN) to process the visual
measurements and a long short-term memory (LSTM) network
to process the inertial measurements. The work demonstrates
the potential of deep learning in improving VIO performance.

A. Dataset

The data was collected on board a Micro Aerial Vehicle
(MAV). The datasets contain stereo images, synchronized IMU

Miheer Diwan
Masters in Robotics Engineering
Worcester Polytechnic Institute
msdiwan @wpi.edu

measurements, and accurate motion and structure ground truth.
It is a subset of the EuRoC dataset and the ground truth is
provided by a sub-mm accurate Vicon Motion capture system.
The Machine Hall 02 easy (MH 02 easy), Machine Hall 03
medium (MH 03 medium), Machine Hall 04 difficult (MH
04 difficult), and Machine Hall 05 difficult (difficult) subsets
of the EuRoC dataset for training the neural network. The
Machine Hall 01 easy dataset was used as test data to predict
the results.

II. VisuAL ODOMETRY

Visual Odometry is the process of determining the equiv-
alent odometry information using sequential camera images.
Our approach was to estimate the relative pose between two
images using a simple CNN (Convolutional Neural Network).
In this section, we will talk about the implementational details,
the issues faced during implementation, and our brief analysis
of said issues. The results and output trajectory comparison
are illustrated in

A. Training Dataset and Ground Truth

We referred to [[f]] for relative pose estimation from two
images and trained multiple models with different training
datasets and tested against the MH 01 Easy Dataset from
the EuRoC dataset. The model was trained primarily on
two datasets: (1) MH 02 Easy, (2) MH 02, 03, 04, and 05
combined. For the combined dataset, the model was trained on
one dataset first, and the checkpoints were saved. The training
was then continued on the remaining datasets by loading the
checkpoints from the previous training session. Because we
were predicting the relative camera pose, the ground truth
labels needed to be modified and the images had to be resized.
The network takes two consecutive images of size 256 X256 x 1
as input and the difference between the pose of the respective
images as the ground truth labels. The pose has translation in
DDy, P~ and the orientation denoted by ¢, ¢z, qy,q.. One
major issue during this process was that the data rates of the
IMU and the camera were different. To fix this, we simply
took the common ground truth data from the image timestamps
available.

B. Network Architecture and Hyperparameters

The network used is a simple CNN with eight convolutional
layers and the activation function used was ReLU. There are

max pooling and dropout layers between the convolutional
layers and two fully connected layers at the very end of the
model. The model outputs 7 values which are the predicted
pose (p). These values are extracted and stored as they will
be used for the visual-inertial fusion part of this project. The
input was two stacked consecutive images of size 256 x 256 x 1
and their ground truth values. The batch size used was 32 and
the learning rate was le-4.

Sequential(
(0): Conv2d(2, 64, kernel_size=(3. 3), stride=(1, 1), padding=(1. 1))
(1): ReLUQ
(2): Conv2d(64, 64, kemel size=(3. 3). stride=(1, 1), padding=(1. 1))
(3):ReLUQ
(4): MaxPool2d(kermnel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): Conv2d(64, 64, kemel_size=(3, 3). stride=(1. 1). padding=(1. 1))
(N:ReLUQD
(8): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(9): ReLU(
(10): MaxPool2d(kemel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(11): BatchNorm2d(64. eps=1e-05. momentum=0.1. affine=True. track_running_stats=True)
(12): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(13): ReLUQ
(14): Conv2d(128, 128, kernel_size=(3, 3). stride=(1. 1). padding=(1, 1})
(15): ReLUQ
(16): MaxPool2d(kemnel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(17): BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True, track_running_stats=True)
(18): Conv2d(128, 128, kernel_size=(3, 3). stride=(1. 1). padding=(1, 1})
(19): ReLU(Q
(20): Conv2d(128, 128, kernel_size=(3, 3). stride=(1. 1). padding=(1, 1))
(21): ReLUQ
(22): Dropout(p=0.5, inplace=False)
(23): BatchNorm2d(128. eps=1e-05. momentum=0.1, affine=True, track_running_stats=True)
(24): Flatten(start_dim=1. end_dim=-1)
(23): Linear(in_features=131072. out_features=1024, bias=True)
(26): ReLUQ
(27): Dropout(p=0.5, inplace=False)
(28): Linear(in_features=1024. out_features=7, bias=True)

1) Loss Function: Initially, we used a simple MSE loss to
regress the pose. However, after referring to [@], we updated
our loss function to account for the orientation too. The
updated loss function used is:

N N q
loss(I) = ||% — x|l + B ||a — ilall

2

C. Output and Inference

The model loss converged after it was trained for 20 epochs
as seen in [I] The average training loss after 20 epochs was
found to be 2.4 x le — 4. Despite the loss converging, the
model produced very inaccurate results on the validation and
test dataset. We believe that this was primarily because of three
reasons:

o The model was overfitting during training. This is highly

plausible as the loss converged within 10 training epochs
and there was minimal improvement over the next 10
epochs.

« Another possible reason for the inaccuracies could be that

the orientation biases were not scaled properly.

To plot the trajectories of the predicted camera pose, we also
overfit the model on the test data itself. The results of this can
be seen in Fig. [8] The major assumption of this approach was
that the neural network is able to learn to predict the relative
poses and biases.

— | | L

Fig. 1: Training Loss Over Epochs

III. INERTIAL ODOMETRY

Inertial Odometry (IO) is a technique used in robotics and
navigation systems to estimate the position and orientation of a
moving vehicle or object using measurements from an inertial
measurement unit (IMU), which includes accelerometers and
gyroscopes. Deep learning has been applied to IO to improve
its accuracy and robustness in challenging environments.

A. Reference Network

The reference network, and data loader functions were taken
from [4]. This paper proposes a deep neural network for
estimating the pose (position and orientation) of a mobile
device based on inertial measurements from its internal sensors
(IMU). The proposed network architecture comprises three
main components: feature extraction, pose estimation, and
recurrent refinement.

o Feature Extraction: The input to the network is a se-
quence of raw IMU measurements over a fixed time
interval. The first component of the network consists of
two parallel convolutional layers that extract spatial and
temporal features from the input data. The spatial features
are extracted using 1D convolutions, while the temporal
features are extracted using a 2D convolutional layer that
operates on the entire sequence of measurements.

o Pose Estimation: The second component of the network
takes the features extracted by the first component and
uses them to estimate the device’s pose. This component
consists of several fully connected layers, followed by
two parallel branches that predict the position and orienta-
tion separately. The position branch outputs a 3D position
vector, while the orientation branch outputs a quaternion.

o Recurrent Refinement: The final component of the net-
work refines the pose estimates using a recurrent neural
network (RNN). The RNN takes the predicted pose from
the second component and the raw IMU measurements
as input and outputs an updated pose estimate. The RNN
is designed to capture the temporal dynamics of the IMU
data and to refine the pose estimate over time.

The network proposed in the paper is illustrated in 2]

The network is trained end-to-end using a combination of
supervised and unsupervised learning. The supervised learning
component uses ground truth pose data to train the network
to predict accurate pose estimates. The unsupervised learning
component uses a sequence-to-sequence autoencoder to learn
a compressed representation of the IMU data, which is used as
an additional input to the RNN during training. The network

e [— — —
w, | ‘ Op, Bp, p; By, Bq, bg, Ag,
- L
[— — — 7

025 [Convolutional [] Bidirectional LSTM
] Max pocling (] Dropout
M Fully connected

128 i 3 128 025 128

Fig. 2: Reference Network

is evaluated on a dataset of real-world IMU measurements,
and the results show that it outperforms several state-of-the-
art methods for IMU-based pose estimation.
B. Network 1

The first network used was very basic, as illustrated in E]

= T T Output
%, @ @ > delta_p_layer
] p— — — g
2 = ~ ~ o
=) = = utput
E E delta_g_layer

Fig. 3: Trial Network 1

The input layer is defined with the specified shape,
and the first LSTM layer is defined with 64 units and
returnsequences=True, meaning that it outputs a sequence of
vectors that correspond to the input sequence. The second
LSTM layer also has 64 units but returnsequences=False,
meaning that it outputs a single vector that summarizes the
information in the input sequence.

A dense layer with 64 units is added on top of the
LSTM layers, which allows the network to learn non-linear
relationships between the LSTM outputs and the output
labels. Finally, there are two output layers: one for deltap
with 3 units, and one for deltaq with 4 units. These output
layers are connected to the dense layer, which provides the
final predictions for the task.

The results and output trajectory comparison are illustrated
in[9
C. Network 2

There are various techniques that can be used to improve
the accuracy of the network for getting pose from IMU data.
Regularization techniques like dropout or normalization can
help prevent over-fitting of the network. This can help the
network generalize better to unseen data, which can improve
accuracy. The second network implements these techniques to
get better output results. It is illustrated in

“True)

Output
delta.p. layer

Input Layer
Batch Norm
|

LSTM2 (seum_sex
|
Dropout
|
Batch Norm
|
Flatten
|
Dense
|
Dropout
|
Batch Norm
|
Dense
|
Dropout
|
Batch Norm

u
l

delta_g_layer

LSTM1 (wum sea-re)

Fig. 4: Trial Network 2

The input layer is defined with the shape of the input
data, and the first LSTM layer is defined with 128 units
and set to return sequences. A dropout layer with a
rate of 0.2 is added to the output of the first LSTM layer
to prevent overfitting, followed by a batch normalization layer.

The second LSTM layer is defined with 64 units and also
set to return sequences. The same process of adding a dropout
layer and a batch normalization layer is repeated after the
second LSTM layer.

After flattening the output of the second LSTM layer, two
dense layers with 128 and 64 units, respectively, are defined
with ReLU activation. Dropout and batch normalization
layers are added to both dense layers to prevent overfitting.

Finally, two output layers are defined with 3 and 4 units,
respectively, for deltap and deltag. These output layers take
the output of the last batch normalization layer as input.

Overall, this model uses the power of LSTM layers to
capture the temporal dependencies in the input data and
produces accurate predictions of deltap and deltaq.

The results and output trajectory comparison are illustrated

in [1Q]

IV. VISUAL INERTIAL ODOMETRY

In this section, we combined the results from the Visual
and the Inertial Odometry methods. The predicted poses from
the Visual Odometry and the Inertial Odometry were stored in
CSV files as translation and orientation (in quaternions). Only
the common timestamps for the camera and IMU data were
used. For this task, we used two main ideas:

o Weighted average Method: We matched the predicted
poses based on the time stamps of the images and the
IMU readings. We then proceeded to take a simple
weighted average of the data to get the output of Visual
Inertial Odometry.

e Deep Learning Method: The second approach that we
used incorporated a fully connected neural network to
fuse the predicted poses. The input for this model was
just the predicted poses. However, some state-of-the-
art implementations to solve VI Odometry also use the
original image data and the ground truth data for this
problem.

V. RESULTS

The trajectory computed by the classical approach was
plotted against a video of the aerial vehicle in flight using
the given in Machine Hall O1 easy dataset which is a subset
of the EuRoC dataset. The trajectory was generated using
OpenGL and Pangolin as demonstrated in [3], and can be
seen in Fig[3] This trajectory is close to accurate to the
ground truth trajectory.

Viewer - o ®

Fig. 5: Output of S-MSCKF for EuRoC MH 01Easy Using
Pangolin

This trajectories can be easily compared with the ground

truth and estimated errors can be calculated. The “data.csv”
file from the given dataset contains the transformations and
quaternions for each timestamp in the flight. This file can be
used as the data for the ground truth trajectory. A similar
“estimated.txt” file is generated through the given starter
code, which is all the estimated values of transformations
and quaternions. Using these two files in the format required
by [4], the plots for estimated against ground-truth can be
generated.
The compared trajectories for classical approach are illustrated
in Figl6| and Fig[7] They are close to the trajectory of ground
truth. This method also provides rotations and translation
errors in the form of graphs.

The resulting trajectory evaluation using Visual Odometry
and Inertial Odometry (for both network 1 and network 2) are
given below.

REFERENCES

[1] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang
Liu, Yash Mulgaonkar, Camillo J. Taylor, and Vijay Kumar, “Robust
Stereo Visual Inertial Odometry for Fast Autonomous Flight.”

[2] Anastasios I. Mourikis and Stergios I. Roumeliotis, ”A Multi-State
Constraint Kalman Filter for Vision-aided Inertial Navigation”

[3] https://github.com/uoip/stereo,, sck f

[4] https://github.com/uzh-rpg/rpgsrajectoryevaluation

[5] Jodo Paulo Silva do Monte Lima, Hideaki Uchiyama 3and Rin-ichiro
Taniguchi, “End-to-End Learning Framework for IMU-Based 6-DOF
Odometry”, 31 August 2019.

—— Estimate

—— Groundtruth

y [m]

x [m]

Fig. 6: Evaluation of output of S-MSCKF with respect to
ground truth for EuRoC MHO1Easy

— Estimate
—— Groundtruth

z [m]

x [m]

Fig. 7: Evaluation of output of S-MSCKF with respect to
ground truth for EuRoC MHO1Easy

—— Estimate
= Groundtruth

x [m]

Fig. 8: Evaluation of output of with respect to ground truth
for EuRoC MH 01 Easy using Visual Odometry

1 —— Estimate

—— Groundtruth

z [m]

x [m]

Fig. 9: Evaluation of output of with respect to ground truth
for EuRoC MHO1Easy using Inertial Odometry Network 1

https://github.com/uoip/stereo_msckf
https://github.com/uzh-rpg/rpg_trajectory_evaluation

—— Estimate
= Groundtruth

X [m]

Fig. 10: Evaluation of output of with respect to ground truth
for EuRoC MHOI1Easy using Inertial Odometry Network 2

[6] PoseNet: A Convolutional Network for Real-Time 6-DOF Camera
Relocalization

[7] DitfPoseNet: Direct Differentiable Camera Pose Estimation

https://arxiv.org/abs/1505.07427
https://arxiv.org/abs/1505.07427
https://arxiv.org/abs/2203.11174

	Introduction
	Dataset

	Visual Odometry
	Training Dataset and Ground Truth
	Network Architecture and Hyperparameters
	Loss Function

	Output and Inference

	Inertial Odometry
	Reference Network
	Network 1
	Network 2

	Visual Inertial Odometry
	Results
	References

