
RBE/CS549: Deep and Un-Deep Visual Inertial
Odometry - Phase 2 with Deep Learning

Shrishailya Chavan
WPI Robotics Engineering

Worcester Polytechnic Institute
schavan@wpi.edu

Sreejani Chatterjee
WPI Robotics Engineering

Worcester Polytechnic Institute
schatterjee@wpi.edu

Abstract—In this paper we build a Deep Learning based
architecture to predict relative camera poses of the two cameras
using the images and IMU data provided in EuRoC Dataset. We
first implement a combination of architectures with a 3 layered
Convolutional Neural Network, and an LSTM network to predict
relative pose of two cameras by stacking their respective images
as input. We then build an LSTM network to predict the relative
poses of the same cameras by using the IMU data as input. Finally
we combine the two architectures for vision only input and IMU
only input to implement a Deep VI fusion network to predict
relative camera poses. We tried with two different customized
loss functions to train the network and comparing the data we
finalized one loss function. With the selected loss functions.

Index Terms—Deep VO, Deep Learning VI fusion

I. INTRODUCTION

After implementing Phase1 we observed that traditional
methods largely depend on feature detection and tracking. It
was natural to ponder if it’s possible to simply substitute this
with deep feature matching techniques such as SuperPoint or
SuperGlue. Even though this is a viable option, it can be
challenging to identify a similar set of features for inertial data.
Though there have been remarkable advancements in Inertial
navigation, only a handful of studies address VI-fusion using
deep learning. In this paper we attempted to bridge that gap
by implementing three deep learning architectures to predict
relative camera poses using the images and IMU data provided
in EuRoC dataset. We first build a combination of CNN and
LSTM network to predict camera poses with only stacked
image inputs. We then built an LSTM network to predict the
same relative camera poses using only the IMU data as inputs.
Finally we combine the two architectures to accomplish the
same task with both vision and inertial input. For all the inputs
our predicted output should be a trabslation vector of x, y, z
and a rotation quaternion vectore of [x, y, z, w]. We were
able to test the networks with two different loss functions and
compare the results.

II. DATASET

We used the entire EuRoC Dataset that is Machine Hall
01 Easy, Machine Hall 02 Easy, Machine Hall 03 Medium,
Machine Hall 04 Difficult, Machine Hall 05 Difficult. We first
combined all the subsets. Then we aligned the images with
the IMU data using timestamps. The aligning was important
as the data were collected in different time instances and is

important to figure out the relative poses of the camera at a
particular time instant.

III. METHODOLOGY

We divide the section into Vision only, Inertial Only and
Visual Inertial architectures

A. Vision Only:

We started with only image inputs. We started to implement
Resnet101 as it has image weights by default

1) Resnet101:: The Resnet101 results were not close to
what we were expecting. Fig 1, 2 shows the result we received

Fig. 1. Translation Plot for Resnet101

2) Resnet50:: We tried with resnet50 with not much luck.
Fig 3, 4 shows the result we received.

3) Customized Architecture - CNN + LSTM:: We created a
simple network of 3 layers of Convolutional Neural Network
and added them with a layer of LSTM. We did this extra
addition since the data are time stamps and LSTM tend to
do well for data collected over a period of time. Fig 5 is an
overview of the architecture. We divided the dataset in train,
test and validation with 80% training data, 10% each for test
and validation data. We trained the network for 50 epochs and
16 batches with a learning rate of 0.0001.



Fig. 2. Rotation Plot for Resnet101

Fig. 3. Translation Plot for Resnet50

4) Loss:: We created a Loss function where we used Mean
Squared Error Loss in Eq. 1 function for translation and
Geodesic Loss described in Eq. 2 for rotation prediction of
the relative pose.

LMSE = ∥p− p∗∥2 (1)

LGeodesic = d(Rs, RGT ) = cos−1

(
tr(RT

s RGT )− 1

2

)
(2)

This loss gave us really bad training and validation loss plot
as shown in Figs. 6 and 7

We then created another loss where we are combining a
weighted average of MSE Loss eq. 1 and Cosine Similarity
Loss in eq. 3 and applying them to train both translation and
rotation data of the poses. This loss gave us promising plot as
shown in Figs. 8 and 9

Lcosine = 1− a · b
∥a∥∥b∥

(3)

Fig. 4. Rotation Plot for Resnet50

Fig. 5. Architecture for Vision Data

B. Inertial Only:

Here we are using only IMU data from our dataset to predict
relative camera poses.

1) Long Short Term Memory - LSTM: We used one layer of
LSTM network for this section. Fig. 10 shows the architecture
we used. We divided the dataset in train, test and validation
with 80% training data, 10% each for test and validation data.
We trained the network for 50 epochs and 16 batches with
a learning rate of 0.0001. We also used the same working
loss described in III-A4. The training and validation losses
are described in Figs. 11 and 12.

C. Visual Inertial Fusion:

This is where we combine our architectures from III-A3
and III-B1 to predict relative camera poses using aligned data
from image and IMU data as inputs.

1) CNN+LSTM+LSTM:: The architecture is briefly over-
viewed in the Fig. 13. We divided the dataset in train, test
and validation with 80% training data, 10% each for test and
validation data. We trained the network for 50 epochs and
16 batches with a learning rate of 0.0001. We used the same
working loss as used in Vision and Inertial Only networks
in III-A4. Figs. 14 and 15 depicts the plots of training and
validation loss for this architecture.

IV. RESULTS:

In this section we will compare the ground truth translation
and rotation data with predicted translation and rotation data
for relative camera poses as implemented for III-A3, III-B1



Fig. 6. Original Loss Training

Fig. 7. Original Loss Training

and III-C1. Figs. 16, 17, 18, 19, 20, 21 are the respective plots.
Here we have converted quaternion rotation to Euler angles
before plotting. We have also plotted the 3D trajectory
of combined rotation and translation results for all three
network’s output as depicted in Figs. 22, 23 and 24.

V. CONCLUSION AND FUTURE WORK:

• We implemented three Deep Learning network to predict
camera pose

– With only image inputs
– Only IMU Data
– Both Images and IMU Data

• We were able to create and compare two customized loss
functions.

• Train with better hyperparameters tuning in the future
might give better result

• Use the prediction data to properly plot camera poses
with translation and rotational data

• Align timestamped data correctly in future

Fig. 8. Customized Loss Training

Fig. 9. Customized Loss Training

REFERENCES

[1] https://ieeexplore.ieee.org/document/7989236
[2] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438698/pdf/nihms-

1520737.pdf



Fig. 10. Architecture for Inertial Only

Fig. 11. Training Loss on IMU data

Fig. 12. Validation Loss on IMU data

Fig. 13. Architecture for Visual Inertial Fusion

Fig. 14. Training Loss for Visual Inertial Fusion

Fig. 15. Validation Loss for Visual Inertial Fusion



Fig. 16. Translation Vision

Fig. 17. Rotation Vision

Fig. 18. Translation Inertial

Fig. 19. Rotation Inertial

Fig. 20. Translation VI Fusion

Fig. 21. Rotation VI Fusion



Fig. 22. 3D trajectory - Vision

Fig. 23. 3D trajectory - Inertial

Fig. 24. 3D trajectory - VI Fusion


