
RBE/CS549: Project 4 -
Classical Visual-Inertial Odometry

Sanya Gulati Siyuan Huang Yijia Wu
sgulati@wpi.edu shuang4@wpi.edu ywu21@wpi.edu

I. INTRODUCTION

In this project, we implemented the seven functions of stereo
Multi-State Constraint Kalman Filter (MSCKF)[1]. As this
paper is an extension of the original MSCKF paper[2], we
have taken it as a reference.

II. INITIALIZE GRAVITY AND BIAS

The gravity and gyroscope bias are initialized with the first
200 messages from IMU when the robot is placed statically.
The gyroscope bias bg is initialized as the average of these 200
gyroscope readings. The gravity g is initialized as [0, 0, gnorm],
and gnorm is the norm of the first 200 accelerometer readings.
The orientation is initialized as the quaternion from −g to
gnorm.

III. BATCH IMU PROCESSING

When we receive a new feature, we want to first process
all the IMU messages received prior to the new feature’s time
stamp. For every IMU message within the IMU message buffer
that’s received prior to the feature time stamp, we update our
state estimation using the process model.

IV. PROCESS MODEL

We model the IMU system model as a continuous-time in
equation 1.

I
Gq̇(t) =

1

2
Ω(ω(t))IGq(t),

ḃg(t) = nwg(t),
Gv̇I(t) =

G a(t),

ḃa(t) = nwa(t),
G(̇p)I(t) =

G vI(t)

(1)

Where I
Gq(t) is the unit quaternion describing the

rotation from global frame {G} to IMU frame {I}.
ω(t) = [ωx, ωy, ωz]

T is the rotational velocity in IMU frame,
and

Ω(ω) =

[
−⌊ω×⌋ ω
−ωT 0

]
(2)

⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3)

The gyroscope and accelerometer measurements, ωm and
am can be written as

ωm = ω + bg + ng (4)

am =I
G R(Ga−G g+2⌊ωG×⌋GvI +2⌊ωG×⌋2GpI) + ba +na

(5)
where I

GR is the rotation matrix calculated from quaternion
I
Gq Then apply expectation operator on equation 1 we obtain
the equations for propagating IMU state estimates:

I
G
˙̂q(t) =

1

2
Ω(ω̂I

G)q̂,

˙̂
bg = 03×1,
G ˙̂vI = CT

q̂ â− 2⌊ωG×⌋Gv̂I + ⌊ωG×⌋2Gp̂I +G g,

˙̂
ba = 03×1,
G ˙̂pI =G v̂I

(6)

The linearized continuous-time model for IMU error-state
is:

˙̃
XIMU = FX̃ +GnIMU (7)

Where F and G are

F =

⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGq̂)
T ⌊â×⌋ 03×3 03×3 −C(IGq̂)

T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

(8)

G =

−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGq̂)
T 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

 (9)

V. PREDICT NEW STATE

Every time we received a new IMU measurement, we use
4th order Runge-Kutta numerical integration to propagate our
estimation for the next state.

VI. STATE AUGMENTATION

In the state augmentation function, we update the camera
position GpC and orientation C

Gq with the last IMU state and
augment the state covariance matrix P .

The pose of the camera can be computed as,
GpC =G pI + C(CGq)

T IpC (10)
C
Gq =C

I q ⊗I
G q (11)

J =
[
J1 O6×6N

]
(12)

J1 =

[
C(ICq) 03×9 03×3 I3 03×3

⌊C(IGq)
T IpC ×⌋ 03×9 I3 03×3 I3

]
(13)

Pk|k =

[
I21+6N

J

]
PK|K

[
I21+6N

J

]T
(14)

VII. ADD FEATURE OBSERVATIONS

This function can update the detected feature in the latest
frame to the feature map. Each feature will be added to the
feature map with its feature ID and current state ID. The
feature that was collected with state ID i and feature ID j
is represented as

Zj
i =

[
uj
i,1 vji,1 uj

i,2 vji,2

]T
(15)

1 represents the left camera, and 2 represents the right camera.

VIII. MEASUREMENT UPDATE

The measurement update function takes measurement ma-
trix H and residual matrix r as input to compute the Kalman
gain K, and then updates the IMU state XIMU , camera state,
and state covariance matrix P .

The measurement matrix H is a matrix with block rows
H(j), j = 1...L. L is the number of all detected features. If
the number of row (feature) is larger than the number of state
X components (21), we employ QR decomposition for the
matrix H . With the reduced mode of numpy.linalg.qr function,
we can directly get Q and TH .

H =
[
Q Q2

] [TH

O

]
(16)

The matrix Q can then be used to compute residual rn as

rn = QT r = THX̃ + nn (17)

Rn is the covariance matrix of the noise vector nn. σ2
im is

the noise of observation. q is the number of rows of matrix
Q.

Rn = σ2
imIq×q (18)

The Kalman gain K can be computed with the following
equation

K = PTT
H(THPTT

H +Rn)
(− 1) (19)

However, because the matrix inverse computation is unsta-
ble, we can change it as solving the Ax = b problem, x is
KT , A is S = THPTT

H +Rn, and b is THP . A is S because
S = ST , both matrix P and Rn are symmetric.

SKT = THP (20)

After getting the Kalman gain K, we can use it to compute
the correction for state ∆X as

∆X = Krn (21)

Finally, the state covariance matrix P can be updated with

Pk+1|k+1 = (Ik×k −KTH)Pk|k (22)

IX. TRAJECTORY ERROR EVALUATION

In this section, we plot the error between Ground Truth
and Estimate Trajectory with the rpg trajectory evaluation
toolbox[3]. The absolute median trajectory error (ATE) is
0.06910338087405558 m and the root mean square translation
error (RMSE) is 0.081715762810781 m.

Fig. 1: Translation Error

Fig. 2: Rotation Error

Fig. 3: Relative Translation Error

Fig. 4: Relative Yaw Error

Fig. 5: Trajectory Side View

REFERENCES

[1] K. Sun et al., “Robust Stereo Visual Inertial Odometry for Fast Au-
tonomous Flight.” arXiv, 2017. doi: 10.48550/ARXIV.1712.00036.

[2] A. I. Mourikis and S. I. Roumeliotis, “A Multi-State Constraint Kalman
Filter for Vision-aided Inertial Navigation,” Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, Apr. 2007.
doi: 10.1109/robot.2007.364024.

[3] Z. Zhang and D. Scaramuzza, “A Tutorial on Quantitative Trajectory
Evaluation for Visual(-Inertial) Odometry,” 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2018.
doi: 10.1109/iros.2018.8593941.

Fig. 6: Trajectory Top View

