
RBE/CS 549 Computer Vision
P4 - Virtual Inertial Odometry

Uthiralakshmi Sivaraman
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA
usivaraman@wpi.edu

Noopur Koshta
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

nkoshta@wpi.edu
Using 1 late day

Abstract—This project implements a filter-based stereo visual
inertial odometry that uses the MultiState Constraint Kalman
Filter (MSCKF).

Index Terms—VIO, MSCKF

I. INTRODUCTION

The objective of the project is to obtain depth from an
image and thus estimate scale. However, obtaining depth
from a single camera without any prior information about the
environment is not possible. One simpler alternative solution is
to utilize a stereo camera with a known pose, where depth can
be directly estimated by matching features. But, matching is
expensive and hard, and it does not work when there is motion
blur, which is common on robots. To solve this, we can use
an Inertial Measurement Unit (IMU) which measures linear
and angular acceleration. The complementary nature of IMU
and camera can be used for multi-modal fusion to estimate
accurate camera pose and backtrack depth. This methodology
has been used in the DARPA Fast Light Autonomy (FLA)
project, where a team achieved 20m/s autonomous flight using
a VIO approach. It is important to note that prior information
is necessary even for deep learning networks to estimate depth
from a single image, and training on a diverse dataset is
necessary for out-of-domain generalization. IN this report, we
talk about the classical approach of solving the Visual Inertial
Odometry using Multi State Kalman Filter.

II. IMPLEMENTATION

A. Initialize Gravity and Bias

This function initializes the bias and initial orientation based
on the starting IMU reading. Initially, the angular and linear
velocity are obtained by averaging the first few readings in
the imu msg buffer. The gyro bias is then initialized using
the average angular velocity, and gravity is obtained from the
linear velocity. The normalized gravity vector is passed as the
IMU state. We then use these two vectors to initialize the
initial orientation, ensuring that the estimation is consistent
with the inertial frame. Finally, the quaternions are converted
to rotation matric and are passed as the orientation state of the
IMU.

Fig. 1. Function structure of the msckf.py. A red pencil icon indicates that
we need to implemented that function

B. Batch Imu Processing

This function processes the imu messages in the imu msg
buffer based on the specified time bound. We initiate the
process model for every imu input in each time bound and
repeat the process until the time bound is reached. Following
this, the current imu id is updated to the next state imu id.
Finally, all the unused imu messages are removed from the
imu msg buffer.

C. Process Model

This function computes the dynamics (pose) of the camera
module state based on the most recent IMU state update.
The function takes in the time, m gyro (current angular
velocity), and m acc (current linear acceleration) as arguments.
Initially, we obtain the IMU state updates and evaluate the
linearized continuous dynamics for the error IMU state. We
then calculate the discrete transition matrices F and Q. Then,
we approximate the matrix exponential to the 3rd order. We
propagate to the state and predict new state using the 4th order
Runge-Kutta method.



D. Predict New State

The 4th order Runge-Kutta method is utilized in this func-
tion to propagate the state. The function takes in the time step,
gyro, and acceleration for the given state as input. Initially,
we calculate the normalized value of the error state of angular
velocity (gyro). Next, we obtain the current orientation, veloc-
ity, and position values from the imu state server. Utilizing the
current values and the omega values, we compute the angular
velocity and the angular acceleration. These values are further
approximated utilizing the Runge-Kutta method.

E. State Augmentation

We will use this function to calculate the state covariance
matrix in order to propagate the state’s uncertainty. Initially,
we obtain the IMU and camera state values, which include

the rotation from the IMU to camera and the translation vector
from the camera to the IMU. Then, we add a new camera state
to the state server by utilizing the initial IMU and camera
state. Following that, we resize the state covariance matrix
and propagate the covariance of the IMU state. The resulting
augmented covariance matrix is provided.

F. Feature Observations

In this function, the feature message is obtained as input,
and the current IMU state ID is retrieved along with the
number of features. Each feature is then added to the map
server one by one, if it does not already exist in the server.
The count of the number of tracked features is also updated for
every given state, and the map server is continuously updated
and all features are tracked. The tracking rate is then calculated
as the ratio of the number of tracked features to the total
number of current features available. Overall, this function is
responsible for adding new features to the map server and
continuously tracking existing features, allowing for accurate
and efficient mapping.

G. Measurement Update

This function employs a measurement model to update the
state estimates. A residual r is defined that depends linearly on
the state errors. Subsequently, we aim to simplify the Jacobian
matrix by utilizing QR decomposition. We then calculate the
Kalman gain and state error.

Using this state error, we update the IMU state first,
followed by the camera states. Finally, the state covariance
is updated, and the covariance matrix is modified to be
symmetric.

III. RESULTS

This project utilizes input data from the MH01easy subset
of the EuRoC dataset. The output generated by the project
for this data is depicted in the accompanying figure and is
consistent with the anticipated output.

REFERENCES

[1] https://rbe549.github.io/fall2022/proj/p4/
[2] https://arxiv.org/pdf/1712.00036.pdf
[3] https://www-users.cse.umn.edu/ stergios/papers/ICRA07-MSCKF.pdf
[4] https://github.com/KumarRobotics/msckf vio




