
RBE/CS549: Computer Vision
Project 4 - Deep and Un-Deep Visual Inertial

Odometry
Shreya Bang

M.S. Robotics Engineering
Email: srbang@wpi.edu

Rajus Nagwekar
M.S. Robotics Engineering

Email: rmnagwekar@wpi.edu

Abstract—Phase 1 focuses on the implementation of a filter-
based stereo Vision-aided Odometry using Multi-state Constraint
Kalman Filter (MSCKF). This project involves the approach that
utilizes sensor fusion from a stereo camera and an IMU. We have
implemented eight functions from MSCKF. With the data from
these two sensors, we aim to accurately determine the state and
localization of the robot. We also have evaluated output of S-
MSCKF with respect to ground truth for EuRoC dataset.

Index: Multi-state Constraint Kalman Filter, Stereo Camera,
IMU

I. PHASE 1: CLASSICAL APPROACH

A. Initialize Gravity and Bias

The 6-DOF IMU sensor used for rotation (gyroscope) and
acceleration (accelerometer) measurements requires calibra-
tion to account for biases. This involves taking the mean
of stationary readings to determine the bias, which is then
subtracted from subsequent readings. The gyroscope should
ideally read [0, 0, 0] but may have small fluctuations. Sim-
ilarly, the accelerometer should ideally read [0, 0, -g] in the
world frame, but may also have fluctuations due to noise and
bias. Calibration is performed before the start of flight to
remove biases in both gyroscope and accelerometer readings.

The function ”initialize gravity and bias” initializes the
gravity and bias of the IMU, as well as the initial orientation
of the robot, based on the first few IMU readings. It calculates
the gyro bias and estimates the gravity in the IMU frame by
averaging the angular velocity and linear acceleration readings
from the IMU messages respectively. The initial orientation is
set to be consistent with the inertial frame. This process en-
sures a reliable start for the Visual-Inertial Odometry system.

B. Batch IMU Processing

The IMU batch processing function is used to read IMU
messages until the next set of images is available from
the stereo camera. The state vector used for estimating the
next states consists of states related to camera and IMU,
including quaternion for rotation, biases for gyroscope and
accelerometer, positions, and velocities.

Fig. 1: State Vector

The ”batch imu processing” function is a crucial part of the
implemented Visual-Inertial Odometry system. It propagates
the state of the IMU by processing the IMU measurements
within a specified time bound. The function iterates through
the IMU messages in the buffer, discarding already pro-
cessed messages and stopping at the time bound. For each
unprocessed IMU message, the function applies the process
model to update the IMU state based on angular velocity and
linear acceleration measurements. The IMU state’s timestamp
and ID are updated, and the processed IMU messages are
removed from the buffer. This function ensures accurate state
propagation and synchronization between the IMU and Visual
Odometry components of the system, making it a crucial step
in achieving reliable sensor fusion and localization.

C. Process Model

The function ”process model” propagates the system state
and covariance using a 4th order Runge-Kutta integration
method. It first extracts relevant information from the current
system state, including the IMU (Inertial Measurement Unit)
state, which includes orientation, velocity, position, and gy-
roscope and accelerometer biases. It then calculates the time
step based on the provided time and IMU state timestamp.

Fig. 2: Dynamics of IMU

Next, the code computes the discrete transition matrix
(F) and noise covariance matrix (G) to describe the system
dynamics and noise characteristics. The transition matrix is
approximated using a 3rd order matrix exponential method,
assuming a small time step (dt). Intermediate matrices Fdt,
Fdt square, and Fdt cube are calculated for this purpose.

The code then predicts the new system state using the
4th order Runge-Kutta integration method, calling the pre-
dict new state function. This likely updates the system state



based on gyroscope and accelerometer measurements and cur-
rent state estimates. The transition matrix Phi is also modified
to account for the null space, which is the space of states that
are not directly observable from the sensor measurements.

The state covariance matrix (Q) is updated using Phi, G,
and the continuous noise covariance matrix, which represents
uncertainties or errors in the system model. The covariance
between IMU states and camera states (if present) is also
updated accordingly. Finally, the state covariance matrix is
fixed to be symmetric by averaging it with its transpose.

The IMU state is updated with the current values of ori-
entation, position, and velocity, which serve as the null space
values for the next iteration of the state estimation process.

D. Predict New State

The function ”predict new state” implements a prediction
step using Extended Kalman Filter (EKF). The prediction
step involves forward integrating the IMU measurements,
gyroscope and accelerometer, over a time step (dt) to estimate
the new state of the system, which includes the orientation,
velocity, and position of the IMU. The integration is performed
using a fourth-order Runge-Kutta method with adaptive time
step. Further it calculates intermediate variables (k1, k2, k3,
k4) using the gyroscope measurements and the current state
of the IMU, and then updates the orientation, velocity, and
position of the IMU using these intermediate variables.

E. State Augmentation

The function ”state augmentation” implements the state
augmentation step by adding a new camera state to the state
server, updating the covariance matrix, and ensuring symmetry
on the addition of new images. It calculates the rotation and
translation from the IMU to the camera, updates the camera
state, and modifies the covariance matrix based on the new
state. This step is crucial for maintaining consistency between
IMU and camera states in the INS implementation.

Fig. 3: The State Augmentation Jacobian

F. Adding Feature Observation

The function ”add feature observations” adds feature ob-
servations from a new image frame to the map server in a
visual-inertial odometry system. It creates new map features
for unseen features, updates observations for existing features,
and calculates the tracking rate.

G. Measurement Update

The ”measurement update” function performs the update
based on measurements from visual features and inertial
sensors. Measurements of Stereo and posisions of the features
are given in Fig. 04 and 05.

Fig. 4: Measurements of Stereo

Fig. 5: Position of the features in left and right Camera Frame

To reduce computational complexity, it first decomposes the
Jacobian matrix H using QR decomposition when the number
of rows in H is greater than the number of columns. This
results in a reduced-size H thin matrix and a transformed
measurement vector r thin.

The Kalman gain, which determines the weight of the
measurements in the update step, is computed using the
reduced-size H thin matrix, the state covariance P, and the
observation noise covariance.

The error in the state, represented by delta x, is computed
by multiplying the Kalman gain with the transformed mea-
surement vector r thin. The delta x is then divided into sub-
vectors for updating the IMU and camera states separately.



Further, the IMU state is updated by applying small-angle
quaternion operations to update the orientation, gyro bias,
velocity, accelerometer bias, and position of the IMU state.
Additionally, the extrinsic rotation and translation between
the IMU and camera are also updated. The camera states,
including the orientation and position, are updated using
small-angle quaternion operations based on the sub-vector
delta x cam.

The state covariance is updated using the Kalman gain and
the reduced-size H thin matrix to obtain the I KH matrix,
which is then used to update the state covariance. To ensure
symmetry, the updated state covariance is fixed to be symmet-
ric.

H. Results

The outcomes of our implementation are depicted in the
following results. Additionally, we have visualized the errors
relative to the ground truth using the MH 01 easy EuROC
dataset.

Fig. 6: Visualization

Fig. 7: Ground Truth vs Estimated Trajectory (Top View)

Fig. 8: Ground truth vs Estimated Trajectory (Side View)

Fig. 9: Rotational Error



Fig. 10: Position Error


