
P4 - Visual Inertial Odometry
Uday Sankar

usankar@wpi.edu
Gowri Shankar Sai Manikandan

gmanikandan@wpi.edu
Shaurya Parashar
sparashar@wpi.edu

Abstract—In this project, we aim to build a stereo visual
inertial odometry system employing a filter-based approach,
specifically the MultiState Constraint Kalman Filter (MSCKF).
The fundamental mathematical principles of the stereo-MSCKF
have been integrated into a provided base-code framework. The
document systematically captures findings and insights obtained
throughout each phase of the project.

I. INTRODUCTION

The primary goal of this project is to determine scale from
an image, which allows for depth evaluation. It is well-known
that obtaining depth information from a single camera is
challenging without any prior knowledge of the surroundings.
A more straightforward alternative involves using a stereo
camera with a known pose, where depth can be estimated
by matching features. However, there are some limitations
to this approach, such as the computational complexity and
difficulty of matching, as well as its ineffectiveness in dealing
with motion blur commonly found in robotic applications.

To address these challenges, an Inertial Measurement Unit
(IMU) can be employed. A typical 6-DoF (Degrees of Free-
dom) IMU measures both linear and angular acceleration.
IMUs excel in handling rapid movements and sudden jolts,
where cameras often struggle, but they tend to drift over
time, which is a weakness that cameras can compensate
for. This complementary nature creates an opportunity for a
multi-modal fusion problem, enabling accurate camera pose
estimation and subsequent depth determination.

In this phase of the project, we implement [1] and refer to
[2] for the mathematical model.

Fig. 1: VIO Pipeline

The pipeline involved in this process is shown in figure 1.
In the given baseline starter code, there were seven functions
that had to be written by us using the concepts discussed in
the paper [].

II. DATA

The data utilized for testing our implementation is the
”Machine Hall 01 easy” (MH 01 easy), a subset of the larger

EuRoC dataset. This data was gathered using a 6-DoF sensor
mounted on a quadrotor, which followed a specific flight path.
In order to obtain the ground truth for the system, a highly
accurate Vicon Motion capture system with sub-millimeter
precision was employed.

III. IMPLEMENTATION

An starter code has been supplied for the development of
the Multi-State Constraint Kalman Filter (MSCKF). To accom-
plish the implementation of the model, we made modifications
to specific functions within the msckf.py Python file. From the
pipeline in figure 1, it is clear that there are seven functions
to implemented in the msckf.py file. They are as follows:

A. initialize gravity and bias
In this function, the initial IMU readings are used to estab-

lish the bias and initial orientation. The first few readings from
the IMU message buffer are averaged to get the angular and
linear velocities. The gyro bias is set using the average angular
velocity, while gravity is determined by the linear velocity.
Subsequently, the normalized gravity vector is incorporated as
the IMU state.

By utilizing these two vectors, the initial orientation is set up
to ensure consistency with the inertial frame. The quaternions
are then incorporated as the IMU’s orientation state. The
resulting vector is expressed as follows [2]:

XI =



q̂TIG
b̂Tg
v̂TI
b̂Ta
p̂TI
q̂TC
p̂Tc


(1)

B. batch imu processing
This function processes the IMU messages within the IMU

message buffer based on a specified time constraint. The
process model is executed for each IMU input within the
given time frame, continuing until the time constraint is
reached. Following this, the current IMU ID is updated to
the subsequent state IMU ID. All remaining unused IMU
messages are then removed from the IMU message buffer.

C. process model
This function calculates the camera module’s pose based on

the latest IMU state update. It takes the current time, angular
velocity (m gyro), and linear acceleration (m acc) as input

arguments. The error for each IMU state is computed and
represented as follows:

X̃I =



θ̃TIG
b̃Tg
ṽTI
p̃TI
θ̃TC
p̃Tc
b̃Ta


(2)

The linearized continuous dynamics for the error IMU state
are evaluated as:

˙̃XI = FIX̃I +GIn (3)

The discrete transition matrices F and Q are calculated as
shown:

F =



− [ω̂×] −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C
(
q̂TI

)
[â×] 03×3 03×3 −C

(
q̂TI

)
03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3


(4)

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C
(
q̂TI

)
03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


(5)

The matrix exponential is approximated up to the 3rd order
as follows:

ϕ = I21×21+F (τ)·dτ+1

2
·(F (τ) · dτ)2+1

6
·(F (τ) · dτ)3 (6)

Lastly, the state is propagated, and the new state is pre-
dicted using the 4th order Runge-Kutta method by calling the
”predict new state” function.

In simpler terms, this function computes the camera mod-
ule’s pose based on the latest IMU state update. The error for
each IMU state and the linearized continuous dynamics for
the error IMU state are evaluated. Discrete transition matrices
are calculated, and the matrix exponential is approximated.
Finally, the state is propagated, and the new state is predicted
using the 4th order Runge-Kutta method.

D. predict new state
This function describes the process of propagating the state

of an Inertial Measurement Unit (IMU) using a 4th order
Runge-Kutta method. The inputs for this function are the time
step (dτ), gyroscopic data (gyro), and acceleration data for

the given state. In simpler terms, the function updates the
orientation, velocity, and position of an IMU based on the
provided inputs.

First, the error state of the angular velocity (gyro) is normal-
ized. Next, the (dω).matrix is computed using the normalized
angular velocity:

Ω(ω̂) =

[
− [ω̂×] ω
−ωT 0

]
(7)

The current orientation, velocity, and position are obtained
from the IMU state server. With these values, the angular
velocity and acceleration are calculated. The Runge-Kutta
method is then used to approximate the updated state. The
method consists of four steps (k1, k2, k3, k4):

k1 = f(tn, yn) (8)

k2 = f

(
tn +

dτ

2
, yn + k1 · dτ

2

)
(9)

k3 = f

(
tn +

dτ

2
, yn + k2 · dτ

2

)
(10)

k4 = f (tn + dτ, yn + k3 · dτ) (11)

After calculating the approximate orientation, it is converted
to quaternions. The velocity and position of the current IMU
state are updated based on the new approximation. These
updated values are then used as the current state values for
evaluating the next state.

E. state augmentation
In this function, we compute the state covariance matrix to

propagate the uncertainty of the IMU and camera states. First,
we obtain the rotation and translation values between the IMU
and the camera. Then, we add a new camera state to the state
server using the initial IMU and camera states.

Next, we update the state augmentation Jacobian, JI , as
follows:

JI =

 C(q̂IG) 03×9 03×3

− (C(q̂IG))
T
[p̂c×] 03×9 I3

03×3 I3

 (12)

We then resize the state covariance matrix and propagate
the covariance of the IMU state. The full propagation of the
uncertainty is represented as:

Pk+1|k =

[
PIIk+1|k ϕkPICk|k(

ϕkPICk|k

)T
PCCk|k

]
(13)

Finally, the augmented covariance matrix, Pk|k, is given as:

Pk|k =

[
J21+6N

J

]T [
P 21+6N
k|k
J

]
(14)

We then update the state covariance in the server.
In simpler terms, this function calculates the uncertainty of

the IMU and camera states using the state covariance matrix.

The state augmentation Jacobian is updated, and the covari-
ance of the IMU state is propagated. Finally, the augmented
covariance matrix is computed and used to update the state
covariance in the server.

F. add feature observations
The following points describe
1) Obtain the feature msg as the input for this function.
2) Get the current IMU state ID.
3) Evaluate the number of features.
4) Append each feature one by one in the feature msg to

the map server, if it is not already present in the map
server.

5) Maintain a count of the number of features tracked.
6) Update the map server for every given state, tracking all

the features.
7) Calculate the tracking rate as the ratio of the number

of tracked features to the number of current features
available.

G. measurement update
In order to update the state estimates, a measurement model

has been implemented. A residual r that depends linearly on
the state errors is defined as follows:

r = HX̃ + noise

In the aforementioned equation, H represents the measure-
ment Jacobian matrix, while the noise component signifies a
zero-mean, white, uncorrelated state error. We have employed
an estimated Kalman filter structure in this context. Initially,
we verify whether the existing H and r values are zero.

Subsequently, we attempt to minimize the complexity of
the Jacobian matrix through the application of QR decompo-
sition, which serves to decrease the computational demands as
outlined below:

Hx =
(
Q1 Q2

)(Th

0

)
In this case, Q1 and Q2 represent unitary matrices, with their

columns constituting bases for the range and nullspace of Hx,
respectively. Moreover, TH denotes an upper triangular matrix.
Following this, we determine the Kalman gain by employing
the subsequent formula:

K = PTT
H(THPTT

H +Rn)
−1

Here, K denotes the Kalman gain, P symbolizes the state
covariance matrix, TT

H represents the upper triangular matrix,
and Rn stands for the covariance matrix of noise. After
determining the Kalman gain, we proceed to compute the state
error as follows:

∆X = Krn

Utilizing the calculated state error, the IMU state is up-
dated initially, followed by adjustments to the camera states.
Ultimately, the state covariance undergoes an update, and the
covariance matrix is adjusted to achieve symmetry.

IV. RESULTS

Since we faced difficulties regarding the visualization using
Pangolin module, we got the visualization video from Irakli
Grigolia’s personal computer.

Fig. 2: Trajectory for EuRoC MH 01 easy

REFERENCES

[1] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint
kalman filter for vision-aided inertial navigation. In Proceedings 2007
IEEE international conference on robotics and automation, pages 3565–
3572. IEEE, 2007.

[2] Ke Sun, Kartik Mohta, Bernd Pfrommer, Michael Watterson, Sikang Liu,
Yash Mulgaonkar, Camillo J Taylor, and Vijay Kumar. Robust stereo
visual inertial odometry for fast autonomous flight. IEEE Robotics and
Automation Letters, 3(2):965–972, 2018.

