
RBE 549: Project 3
P4: Classical Visual-Inertial Odometry

Deepak Harshal Nagle
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: dnagle@wpi.edu
Telephone: (774) 519-8335

Irakli Grigolia
Computer Science

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: igrigolia@wpi.edu
Telephone: (508) 373-3402

Abstract—This report presents the implementation of a stereo
visual-inertial odometry algorithm that utilizes the Multi-State
Constraint Kalman Filter (MSCKF). The implementation is
based on a pre-existing codebase provided as starter code. The
paper details the mathematical concepts underlying the stereo-
MSCKF algorithm and the implementation of the algorithm
within the codebase. The results and observations for each step
of the implementation are documented in this report.

INTRODUCTION

The main objective of this project is to estimate depth from
images by obtaining scale, which is a challenging task as
depth cannot be directly obtained from a single camera without
prior knowledge about the environment. A stereo camera with
a known pose can be used to estimate depth by matching
features, but this approach has limitations such as being
computationally expensive and not working well with motion
blur. To overcome these limitations, an Inertial Measurement
Unit (IMU) can be used, which measures linear and angular
acceleration. An IMU works well with fast movements and
jerks where a camera fails but drifts over time, which is
where a camera excels. Therefore, this complementary nature
of the two systems can be used for accurate pose estimation
and backtracking depth. The specific approach used in this
project involves implementing a filter-based stereo visual in-
ertial odometry using the MultiState Constraint Kalman Filter
(MSCKF) and testing it on the Machine Hall 01 easy subset of
the EuRoC dataset. The starter code provided by the authors of
the S-MSCKF paper in Python will be modified to implement
key functions for this approach.

DATA

Machine Hall 01 easy subset of the EuRoC dataset is used
to test the implementation. The data is collected using a VI
sensor carried by a quadrotor flying a trajectory. The ground
truth is provided by a sub-mm accurate Vicon Motion capture
system.

FUNCTIONS

We implement Multi-State Constraint Kalman Filter
(MSCKF), some of the functions implemented are described
below.

initialize gravity and bias:

This function initializes the initial orientation and bias based
on the first readings from the IMU. The average angular and
linear velocities are calculated from the IMU message buffer’s
first few readings. The gyro bias is initialized using the average
angular velocity, and gravity is calculated using the linear
acceleration. The normalized gravity vector is used as the
IMU state, and the initial orientation is set consistently with
the inertial frame. The quaternions represent the final vector,
where G

I q denotes the rotation from the inertial frame to the
body frame, which in this case is the IMU frame. The vectors
GvI and GpI represent the body frame’s velocity and position
in the inertial frame, and bG and ba are the biases of the
measured angular and linear velocities from the IMU. The
representation of the final vector is given by the following
expression

batch imu processing:

The function deals with processing IMU messages from a
buffer, taking into account a specified time range. It operates
by running the process model for each IMU input that falls
within the time range, repeating this process until the end of
the range is reached. Once completed, the current IMU ID is
updated to the next state ID, and any unused IMU messages
are removed from the buffer.

process model:

The aim of this function is to determine the camera module’s
pose (dynamics) based on the most recent update of the IMU
state. To achieve this, the function takes in the time, m gyro
(current angular velocity), and m acc (current linear accel-
eration) as arguments. Following this, the function calculates
the error for each IMU state, as represented by the following
formula.



The linearized continuous dynamics for the error IMU state
is calculated as follows:

F and Q (discrete transition matrices) are calculated as
follows:

The matrix exponential is approximated to third order as
follows:

predict new state:

After obtaining the current state, we apply the fourth-order
Runge-Kutta method to propagate the state and predict its
new value. Specifically, we use a function called ”predict new
state,” which takes as input the time step (dτ ), the gyroscope
data, and the acceleration information for the current state. To
begin, we calculate the normalized error state of the angular
velocity data. Next, we compute the Ω matrix by following a
specific procedure.

We retrieve the present orientation, velocity, and position
data from the IMU state server. Based on the current state
and the Ω values, we compute the angular velocity and
acceleration, which we then approximate using the Runge-
Kutta method.

Once we have computed the estimated orientation, we
convert it into quaternions and use this information to update
the velocity and position data for the current IMU state. These
updated values are then used as the current state information
to determine the next state in the sequence.

State Augmentation:

In this step, our aim is to calculate the state covariance
matrix, which will help us in disseminating the ambiguity of
the given state. Initially, we extract the IMU and camera state
values that correspond to the rotation from the IMU to the
camera and the translation vector from the camera to the IMU.
Subsequently, we incorporate a fresh camera state into the
state server, utilizing the initial IMU and camera state. The
augmentation Jacobian is calculated as follows:

The state covariance matrix is resized and the IMU state is
propagated:

This is the Augmented covariance matrix. It is regularly
updated through this function.

F. Incorporating feature observations
Firstly, the feature message is acquired as input for this

function. We then determine the current IMU state ID and



evaluate the number of features. Following that, we succes-
sively add each feature from the feature message to the map
server if it isn’t already present. Additionally, we maintain a
count of the tracked features. For every given state, the map
server is updated, and all features are tracked. The tracking rate
is computed as the ratio of the number of tracked features to
the total number of available features.

G. Updating measurements

A measurement model is utilized to update state estimates.
A residual, denoted as r, is linearly dependent on state errors,
represented by the following relation [3]:

In the equation above, H represents the measurement Ja-
cobian matrix, and the noise term denotes a zero-mean,
white, uncorrelated state error. The estimated Kalman filter
framework is implemented. Initially, we examine whether the
existing H and r values are zero. We then attempt to reduce the
complexity of the Jacobian matrix using QR decomposition to
minimize computation requirements:

Here, Q1 and Q2 are unitary matrices with columns that
form bases for the range and null space of Hx., respectively.
TH is an upper triangular matrix. Next, we calculate the
Kalman gain according to the equation:

K = P TH (THPTT
H + Rn)−1

In this equation, K represents the Kalman gain, P is the state
covariance matrix,TT

H is the upper triangular matrix, and Rn

is the noise covariance matrix. After calculating the Kalman
gain, the state error is computed as:

∆X = K rn

Using this state error, the IMU state is updated first,
followed by the camera states. Lastly, the state covariance is
updated, and the covariance matrix is adjusted to be symmet-
ric.

IV. Results

The input data employed for this project is sourced from
the Machine Hall 01 easy (MH 01 easy) subset of the EuRoC
dataset. Figure 1 displays the trajectory output for this data,
which aligns with the anticipated outcome. The output video
is included with the code files.

Final plot:

REFERENCES

[1] https://www-users.cse.umn.edu/ stergios/papers/ICRA07-MSCKF.pdf
[2] https://rbe549.github.io/spring2023/proj/p4/
[3] https://arxiv.org/pdf/1712.00036.pdf


