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Abstract—This project aims to implement Vision-aided Odom-
etry utilizing the Multi-state Constraint Kalman Filter (MSCKF)
approach. The motivation behind adopting MSCKF for Visual
Inertial Odometry lies in addressing the challenges faced by
autonomous vehicles in employing high-quality sensors and
efficient processors. By implementing this approach, it is possible
to achieve accurate state estimation and localization without
relying on costly and heavy sensor systems. In this project, a
filter-based method is developed, fusing data from two sensors: a
stereo camera and an IMU. The MSCKF is employed to estimate
the state of the robot, while sensor fusion of the IMU and stereo
camera is used to determine its localization

Index Terms—RIndex Terms: Visual Inertial Odometry, Multi-
state Constraint Kalman Filter, MSCKF, sensor fusion, stereo
camera, inertial measurement unit, IMU.

I. PHASE I

A. INITIALIZING GRAVITY AND BIAS

The 6-DOF IMU sensor utilized in this project is prone to
biases that must be corrected in each reading. The 6-DOF
represents three degrees of freedom for rotation (gyroscope)
and three degrees of freedom for acceleration (accelerometer).
This correction process can be considered as the calibration
of the IMU sensor, where the biases in both rotation and
acceleration are calculated and subsequently subtracted from
every subsequent IMU reading.

This calibration is performed by keeping the rotor stationary
and collecting approximately 100-200 readings, followed by
calculating the mean of these readings. Ideally, the gyroscope
reading should be [0, 0, 0]; however, due to noise and bias,
small fluctuations in the gyroscope reading are observed.

To correct for these fluctuations, the mean of the collected
readings is subtracted from the subsequent IMU readings
while the rotor is stationary, as described earlier. Ideally, the
accelerometer reading should be [0, 0, -g] in the world frame.
Nevertheless, noise and biases in the low-cost IMU sensor
cause fluctuations

The overview of the traditional method which we imple-
mented is represented below:
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Fig. 1. State Vector
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Fig. 2. Error State Vector

B. BATCH IMU PROCESSING

IMU batch processing is carried out to process IMU mes-
sages until the next set of images from the stereo camera
becomes available. Prior to this, it is crucial to define the
state vector to estimate subsequent states. The state vector
comprises states in both the camera and IMU.

As depicted in Figure 1, the state vector includes the
quaternion q, which describes the rotation from the global to
the IMU frame. The variables bg and ba represent the biases
in the gyroscope and accelerometer, respectively. The position
and velocity of the body frame in the inertial (world) frame
are denoted by pi and vi. The transformations between the
IMU and camera frames are represented by qIc and pIc.

For N camera poses, the state vector adds a new state in the
buffer, with the first element being the states associated with
the IMU sensor.

The objective of the batch IMU processing function is to
predict the subsequent state and update the state information
using the process model for a given time step, based on
the IMU messages. The state information is updated after
processing the IMU data and concludes after a specified time
duration.



C. Process Model

The process model predicts the IMU state using a motion
model derived from error states, as shown in Figure 2. The
error in quaternion is a quaternion operation, represented as:

δq = q ⊗ q−1
0 (3)

The ω̂ and â are given as follows:

ω̂ = ωm − bg (4)
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Fig. 3. IMU dynamics
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Fig. 4. Covariance Matrix

â = am − bg (5)

The other errors are additive errors that simply add to
the previous quantity. These error states are employed to
determine the robot’s process model. Angular velocity and
linear acceleration are derived, as illustrated in Figure 3, where
Ω is the quaternion derivative and is expressed as:

Ω(ω) =

[
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Here, ω̂ is a skew-symmetric matrix of the ω vector. The
linearized continuous error dynamics of the IMU error state
are defined as follows:

˙̃XI = FX̃I +GnI (7)

The term nI denotes the Gaussian noise of the accelerome-
ter and gyro readings. To propagate the IMU measurement in
discrete time, the 4th-order Runge Kutta method is applied.

The F matrix in the above equation (discrete-time equation)
is utilized to derive the discrete-time state transition matrix,
and the G matrix is employed to obtain the discrete-time
noise covariance matrix. ϕK is approximated using a Taylor
expansion up to the 3rd order of F, while Qk is a discrete-
time state covariance matrix obtained by continuous-time
methods of state covariance Q and G matrix. The observability
constraint is applied by modifying the transition matrix. The
state transition matrix is corrected by making it symmetric in
this step.

Fig. 1. Runge Kutta

D. State Augmentation

When new images are received, the state should be aug-
mented with the new camera state. The pose of the new camera
state can be computed from the latest IMU state.

The augmented covariance matrix is given by the following
equation in Section VI, and the J matrix is given by the
equation in Section VI.

E. Adding Feature Observation

Here, we check if the feature observed is in the map server
dictionary or not. If it is not there, we add a new key to the
map server dictionary.

F. Measurement Model and Update

A single feature fj is observed by the stereo cameras with
the pose. The stereo cameras have different poses, for left and
right cameras respectively, at the same time instance. Although
the state vector only contains the pose of the left camera,



the pose of the right camera can be easily obtained using the
extrinsic parameters from the calibration.

The dimension is then reduced to R3 assuming the stereo
images are properly rectified. However, by representing the
same in R4, we can skip the rectification, and the camera
poses are given by:

The position of the feature in the world frame is calculated
using Gaussian-Newton least square minimization. The resid-
ual of measurement can be approximated by the following
equation:

G. State Augmentation

The global frame feature pose is determined using the
camera pose, which causes the uncertainty of pj in the global
frame to be related to the camera states. By projecting the
residual in equation (4) onto the null space V of HJ , this
correlation is removed.

1) Determine Cam0 pose.
2) Determine Cam1 pose.
3) Identify 3D feature position in the world frame and its

observation using stereo cameras.
4) Transform the feature position from the world frame to

the cam0 and cam1 frame.
5) Adjust the measurement Jacobian to maintain observ-

ability constraint.
6) Calculate the residual.

II. UPDATING PROCEDURE

The updating process is executed in the following manner:
1) Verify if H and r are empty.
2) Perform decomposition on the final Jacobian matrix to

minimize computational complexity.
3) Determine the Kalman gain.
4) Calculate the state error.
5) Update the IMU state.
6) Modify the camera states.
7) Refresh state covariance.
8) Ensure covariance symmetry.

III. RESULTS

The outcomes of our implementation are presented below.
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