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Abstract—In this project,we aim to build a visualization system
inspired by Tesla’s latest dashboard for autonomous mode. The
system takes a set of videos recorded from cameras of a 2023
Tesla Model S and outputs a rendered video of visualizations,
including identifying lanes, vehicles, pedestrians, traffic lights,
and road signs. In Checkpoint 1, the focus is on implementing
basic features, while Checkpoint 2 adds more granularity to the
system by sub-classifying vehicles, classifying arrows on traffic
lights, and indicating objects such as dustbins and traffic poles.
Checkpoint 3 adds further cognitive abilities to aid in decision-
making, such as identifying brake lights and indicators of other
vehicles, pedestrian pose, and distinguishing between parked and
moving vehicles.

I. CHECKPOINT 1

A. Lanes

We have implemented two models to get segmented lanes.
Figure 1. is a sample output from LaneNet Lane Detection [7].
The YoloPv2 (Figure 2) [5] unsegmented clean lane points,
whereas the working LaneNet model gives segmented yet
unclean points. So we use the segmentation from LaneNet
to match the clean lane points from YoloPv2, and get correct
segmentation between lanes.

Fig. 1: LaneNet Segmented Mask

Fig. 2: YoloPv2 Sample Output

B. Vehicles, Pedestrian, Traffic Light, Road Signs

Yolo V3 (Darknet) [2] was used in order to detect the
vehicles, pedestrian, Traffic Light, and Road Signs (Stop
signs). In order to get the traffic light color, we made masks for
both green and red color in HSV space. Passing them through
the detected 2D bounding box, and counting the number of
green v/s red pixels was our idea behind it. However, the
intensity of the masks still remain a hyperparameter to get
better and better accuracy. Figure 3 is a sample output of Yolo
V3 detecting vehicles and Traffic Lights.

Fig. 3: Yolo v3 Detecting Vehicles and Traffic Lights

The flowchart (Figure 4) gives an overall pipeline of the
models that we implemented, starting from the conversion of
frames to sequences, to getting the depth map for the frames,
and getting rendered sequences.

II. CHECKPOINT 1

A. MiDaS Depth Map Generator

For every single frame, we get depth maps from MiDaS,
using which we spawn our objects in the environment, given
the center points of the detecting boxes of the objects.

B. Visualization in Blender

Some of the visualization that we got from the detected
objects for Checkpoints are included in the following figures.



Fig. 4: The Model Zoo

Fig. 5: Visualization Sample 1- Checkpoint 1

Fig. 6: Visualization Sample 2- Checkpoint 1

Fig. 7: Visualization Sample 3- Checkpoint 1

C. Challenges Faced in Checkpoint 1

1. Tuning the color range for thresholding the traffic lights,
in order to segregate them into red and green light is a difficult
task, to generalize for all the frames, be it night or noon.
2. Segmentation of the lanes are performed mostly by very
poorly trained good models, or highly software incompatible
models. For example- We found a LaneNet Tensorflow model



[4], the best trained model. But having setup on Tensorflow
1, we were unable to run it on either Colab, or on Local
due to several dependencies being shut down on Tf1. Though
Kaggle Notebook supports Tf1, due to several deprecated
dependencies, it was hard to go through it.

III. CHECKPOINT 2

A. Vehicles

1. From the YOLO 2D detection of vehicles that we did
in First Checkpoint, we wanted to shift to 3D bounding box,
i.e. 6D Pose Estimation of Vehicles. We wanted to do this is
because of the basic fact that given vehicle coordinates u,v,
cannot give us the orientation of the vehicle to visualize in
Blender . In specific, we are only concerned for yaw of the
vehicles, because in the most extraordinary condition roll or
pitch is considered.

2. We considered Baidu’s Vehicle Angle Detection Competi-
tion [1]. We carefully studied and tried to implement the codes
of the winners and runners up, which was basically based on
mask CNN, and 3D bounding boxes respectively. However,
despite repeated trials, it couldn’t work unfortunately on our
data. From this, we took inspiration to apply 3D bounding
boxes.

3. YOLO3D [6] (Figure 8) was tried and implemented to
find the image coordinates and yaw value. Initially we tried
to implement both 2D and 3D object detection together, as
YOLO3D gives very much awry values for location compared
to 2D Detection, i.e. use 2D detection for vehicle classification
and location, and yaw for angle. However, due to irregularities
between vehicles being detected between both the models,
which we tried to solve by looping over all the detected objects
of a frame, and matching with nearest vehicle of 2D to 3D, we
couldn’t do it as planned as in a packed vehicle environment,
it gets tough to match in that way.

Fig. 8: Sample YOLO3D

In the above image, it is clearly visible that 6D bounding
boxes are not at all plotted correctly. It may be due to the
fact that YOLO3D was trained using stereo camera, and
inference was being done on Monocular images. So, maybe
stereo camera properties might be coming into play somewhere
during testing. Also, it might be the case that it is not trained
enough to run well on unseen data.

However, we still continued with this 6D pose estimation,
because we considered knowing angle of a vehicle to be
more important than proper position coordinates of it, because
position can be compensated by using scaling and shifting in
the environment, due to the lack of metric scale. Figure 9
shows the vehicles spawned in their original orientation.

Fig. 9: Vehicles facing opposite in direction

B. Vehicle Classification

1. We tried different parameter comparisons from the
bounding boxes in order to do vehicle classification. Like
mentioned earlier, we had to scrap off the idea of doing
2D classification due to mismatch in detected objects in 3D
and 2D models. So, we tried several ratios like the most
easily visible ones- height:length, height:width, height:depth
for classification. As they are hyper parameters, which we
were only tuning for one frame, we think a more generalized
approach like taking a set of values and check over all the
images for the accuracy of classification should be a way
better method. Our tuning for one frame was giving not so
great accuracy for other frames.

C. Human Pose Estimation

We implemented the Human Pose Estimation model, Real
time Multi-Person Pose Estimation [3]. The Figure 10, gave us
satisfactory enough results to pursue with this. Although we
tried to reason whether only u,v of human body checkpoints
are needed to find the pose of a pedestrian, we came to a
conclusion that the depth values of different keypoints will be
able to place the body armature (Figure 11) such that pose of
a pedestrian is correctly visualized.

Fig. 10: Sample YOLO3D



Fig. 11: Sample YOLO3D

D. Lanes

Plotting a mesh containing the lane points as we did for
Checkpoint 1 is clearly not very pleasing to the eye and would
generally not be considered a good visualization. In an attempt
to improve this, we decided to plot the lanes as profile curves
in Blender.
The main issue with using lane segmentation with blender
visualizations is that the models provide a list of pixels. The
large number of pixels we get is a lot of information. In order
to draw neat lanes in Blender we would need only a tiny
amount of this data, but it needs to be high quality. Therefore,
it is the selection of good points that makes it harder than
other tasks in the project.
In our implementation, we first combine the instance segmen-
tation information from our poorly trained Lanenet model. We
took the data points from a YOLOpv2 as they were cleaner,
and used an intersection of points from both networks. We first
project these points from the image to the 3D world points on
the road and then fit a second-degree polynomial curve that
minimizes the sum of the L2 distance of the points from the
curve. This is a simple regression problem for which we used
RANSAC. After we get the curve, we sample points on this
curve. These sampled points act as control points for a bezier
curve that we draw in Blender. We then fit a profile to this
bezier curve which makes it look like a lane marking.
We have implemented this method for one frame, but our
hyperparameters need more tuning. We plan to generate video
sequences for these lanes in the next few days.
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