
RBE/CS549: P3: Einstein Vision
Shrishailya Chavan

WPI Robotics Engineering
Worcester Polytechnic Institute

schavan@wpi.edu

Using 1 late day

Sreejani Chatterjee
WPI Robotics Engineering

Worcester Polytechnic Institute
schatterjee@wpi.edu

Using 1 late day

Abstract—In this project, we have built a visualization inspired
and bettered version of Tesla’s dashboard. Here we are provided
with a set of videos recorded from cameras of a 2023 Tesla Model
S. As a result we are required to output a rendered video of our
visualizations or atleast we need to show the view in front of the
car and of our car, and if possible we can also show everything
around the car. Here we have used both deep learning based and
classical based approached to create a rendered video. We have
used Blender software to create the rendered images of the data
provided from the Tesla car. Additionally, Project is divided in
three Checkpoints where in each checkpoint we are supposed to
work on different perspectives.

Index Terms—Blender, Rendered Video, visualization

A. Dataset:

The data given for this project contains the following:
1) Assets (Blender models in the Assets folder) for various

things like Cars: Sedan, SUV, Pickup truck, Bicycle, motorcy-
cle, Truck, Traffic signal, Stop Sign, Traffic Cone, Traffic Pole,
Speed Sign and Pedestrian. We also include texture images for
stop sign and a blank speed sign (add your own speed as text
here.

2) Videos (Undistorted and Raw in the Sequences folder) for
13 sequences under various conditions with what scenarios are
encountered in the respective markdown files in each folder.

3) Calibration Videos (in the Calib folder) used to calibrate
the cameras.

Fig. 1. Tesla Model S used to capture data.

When all the steps mentioned above were followed then we
began our Three objectives which were performed in Blender
using python scripts and dataset given.

B. Checkpoint 1: Basic Features

In this checkpoint, we implemented basic features which
are absolutely essential for a self-driving car. The features we
implemented are:

1) Lanes: Here we identified and displayed the different
kinds of lanes on the road. Each lane has significance and are
essential to identify such as green lanes are drivable lanes.

2) Vehicles: Here, we identified different kinds of vehicles
such as Cars, Trucks, Jeeps, Bicycles, Motorcycles and SUV’s.

3) Pedestrians: Here, we identified and located the pedes-
trians that were walking or standing.

4) Traffic lights: We identified and located the traffic lights
at the various positions we came across them.

5)Road signs: The Road signs such as STOP and Speed
limit signs were identified and located at certain places.

C. Object Detection

Fig. 2. Speed Limit Recognition

The following steps were done for object detection on the
given dataset:-

• 1) We used Yolov5l pretrained model for detection of
main objects identified on the road, Cars, trucks, Traffic
Lights and Pedestrians.

• 2) Here, Traffic Sign Detection was done using Pytorch
and Pretrained Faster RCNN model with Resnet50 back-
bone. The dataset used in this model was Ger=man Trafic
Sign Dataset so we were not able to detect Speed Limit
from this model

• 3) For speed limit we did image segmentation where a
polygon for a Traffic signal is first segmented and then
we used pytesseract OCR library from python detect the



text and Speed limit. Fig. 2 is a demonstration of the
process.

• 4) We estimated the Depth from Camera center (camaera
used in the car’s dashboard) and identified objects using
intel Midas pretrained models. Midpas Pretrained model.

• 5) We saved the bounding boxes details and the confi-
dence scores of all the objects detected along with th
depth estimation in a CSV file.

• 6) In Blender we wrote a script that will identify the
object class name from the csv file and then estimate a
scaled position of that object relative to the driving car as
stated in the depth estimation. Then we place the .blend
object in that position in the scene

• 7) We used YolopV2 model to identify the lanes, and
drivable regions which we segmented with Red and Green
Masks, then we idemtified the red and green masks in the
frames in Blender scripting to place the lanes in desired
positions

D. Checkpoint 2: Advanced Features

In this checkpoint, we built on top of the previous check-
point by enhancing and adding more features. Here, we
add more granularity to the vision system which can aid in
algorithmic decisions in navigation modules.

Vehicles: Here, we classified (identified different vehicles)
and subclassified them (identify different kinds of a type of
vehicle). We displayed these detections as the respective 3D
model in our renders. More particularly, we rendered Cars:
like Sedan, SUV, hatchback, Trucks like Trucks and Pickups,
Bicyle, Motorcycle, TRaffic Lights, Road Signs and Objects
like Traffic Cones, Fire Hydrants. We were able to identify all
these items using previous YoloV5 model and also placed them
in the relavant position in Blender using the logic explained
in -C

E. Checkpoint 3: Bells and Whistles

Fig. 3. Identifying Pose of a Person

In this checkpoint, we try to add further cognitive abilities
for better decision making in our planning stage.

1) Break lights and indicators of the other vehicles: Iden-
tified and displayed the vehicle break lights and indicator
signals. This helps the navigation module in making better
lane changing decisions.

2)Pedestrian pose: We identified pedestrians and their pose
for each frame instead of just classifying and displaying them.

3)Parked and Moving Vehicles: Distinguished between
parked and moving vehicles and displayed them accordingly.

F. Methodology for Checkpoint 3:

We were not able to paint the breaklights on cars body in
blender. Neither were we able to convincingly detect parked
vehicle. However we used the following logic to figure out the
vehicle and pedestrian pose. We looked into corresponding
frames for vehicles position, and if the vehicles is beyond
the drivable region and also the relative distance between
the camera center and the center of the car’s or pedestrian
decreases, we place them posing facing the vehicle in Blender.
Fig. 3 demonstrates two frames where the relative distance
from the detected persons are decreasing.

G. Results

Fig. 4. Scene 11 Rendered Image

Fig. 5. Scene 13 Rendered Image

Above are the results that we got after Rendering the frames
from the videos.

After finding the Rendered images of all the scenes from
1 to 13 we did Rendered Visualization of those images. This
we achieved using the dataset provided.

I. CONCLUSION

In the project we performed Visualization of Tesla dash-
board where we were provided the Dataset from Tesla Model



S. We used various object detection methods and Pretrained
models to detect objects from the data. We also used image
segmentation for certain detection tasks due to lack of pre-
trained models. After detecting objects we rendered those
objects in Blender and performed final visualization of the
objects. For this project due to interest of time we had to rely
on existing pre-trained models, however for future use we need
to train our own model from larger datasets.

REFERENCES

[1] https://github.com/matlab-deep-learning/Object-Detection-Using-
Pretrained-YOLO-v2/blob/main/README.md

[2] https://github.com/ultralytics/yolov5
[3] https://krbnite.github.io/Intel-at-the-Edge-Leveraging-Pre-Trained-

Models/
[4] https://debuggercafe.com/traffic-sign-detection-using-pytorch-and-

pretrained-faster-rcnn-model/


