
RBE/CS 549 Computer Vision
P3 - EinsteinVision

using 2 late days

Uthiralakshmi Sivaraman
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA
usivaraman@wpi.edu

Noopur Koshta
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

nkoshta@wpi.edu

Sanya Gulati
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

sgulati@wpi.edu

Abstract—The project involves the reconstruction of an au-
tonomous vehicle dashboard using Blender software and focuses
on the challenges that arise in detecting and rendering obstacles
using only images as sensors in autonomous vehicles. The
dashboard aims to display real-time information related to the
vehicle’s surroundings, such as obstacles, traffic signals, and road
conditions. The project involves the development of various sce-
narios to simulate different driving conditions and situations that
an autonomous vehicle may encounter. The project’s outcome
will provide insights into the challenges faced in detecting and
rendering obstacles using only images, which could lead to the
development of new technologies and strategies to improve the
performance of autonomous vehicles in real-world situations.

Index Terms—Autonomous, Blender

I. CHECKPOINT 1 : BASIC FEATURES

In this checkpoint, we’ll be creating basic features in
blender as follows:

• Lanes:
Identify and show the different kinds of lanes on the
road, they could be dashed, solid and/or of different
color (white and yellow). Each lane has significance and
are essential to identify.

• Vehicles:
Here, identify all cars (but you do not need to classify
as different types) and represent them as a car shape.
Here we tried nuScenes dataset to train model to give
car classes.

• Pedestrians:
Identifying and locating pedestrians in the scene and
depicting their poses.

• Traffic lights:
Indicate the traffic signals and it’s color alongwith arrows.

• Road signs:
There are sign boards on the road you need identify and

represent such ad Stop Sign and speed limits.

To identify the x and y positions of any of these objects, we
used YOLOv5 and to get z-coordinate of objects, we created
depth map. For each bounding box of object, centtroid was
obtained and then the relative depth of that object pixel in that
depth map is obtained and using those we obtained relative
distance in world frame.

We use MiDAS to obtain monocular depth. MiDAS (Mul-
tiple intelligent Driving Agents for Safety) is a research
project focused on the development of intelligent transporta-
tion systems for autonomous driving. The project is led by
the University of Michigan and involves collaboration with a
number of automotive industry partners.

MiDAS data refers to the data collected by the sensors and
cameras used in the autonomous vehicles developed as part of
the MiDAS project. This data is used to train machine learning
algorithms and improve the performance of the autonomous
driving system.

The MiDAS project aims to address the safety, efficiency,
and environmental challenges associated with transportation
through the development of autonomous driving technology.
The project has been ongoing since 2015 and has produced a
number of research papers and prototype autonomous vehicles.

MiDAS (Multiple intelligent Driving Agents for Safety) is
an autonomous driving system that uses a geometric approach
to estimate depth and build a 3D map of the environment
around the vehicle. This is achieved by combining information
from multiple sensors, including cameras and LiDAR (Light
Detection and Ranging) sensors.

The basic idea behind the geometric approach is to use
the geometry of the scene to estimate the depth of different
objects. This involves finding correspondences between points
in the 2D image captured by the camera and points in the 3D
world. The process involves the following steps:

• Feature Detection: The first step is to detect feature points
in the 2D image, such as corners or edges, that can be
used to find correspondences with points in the 3D world.

• Feature Matching: The next step is to find correspon-
dences between the feature points in the 2D image and
the 3D world. This is done by comparing the descriptors



of the feature points in the 2D image with those in the
3D world.

• Estimation of Fundamental Matrix: Once the correspon-
dences are found, the fundamental matrix is computed.
The fundamental matrix relates the 2D image points with
the 3D world points.

• Estimation of Essential Matrix: The essential matrix is
then estimated from the fundamental matrix and the
intrinsic parameters of the camera. The essential matrix
relates the 2D image points with the 3D world points and
also takes into account the camera parameters.

• Camera Pose Estimation: The camera pose is then esti-
mated from the essential matrix. This gives the position
and orientation of the camera in the 3D world.

• Triangulation: Finally, triangulation is used to estimate
the depth of the points in the 3D world. This involves
finding the intersection point of two rays that pass through
the camera and the 3D world point.
The formula for triangulation is given by:
(x1 - cx) / fx = (X - Xc) / Zc
(y1 - cy) / fy = (Y - Yc) / Zc
where (x1, y1) are the pixel coordinates of the feature
point in the 2D image, (cx, cy) are the coordinates of
the principal point of the camera, fx and fy are the focal
lengths of the camera, (Xc, Yc, Zc) are the coordinates
of the camera in the 3D world, and (X, Y, Z) are the
coordinates of the 3D world point.

By repeating this process for multiple points in the image
and combining the results, MiDAS can build a detailed 3D
map of the environment around the vehicle, which can be used
to navigate and avoid obstacles in real-time.

A. Blender:

Blender is a powerful 3D graphics software that can be
used to create stunning images and animations. One of the
key features of Blender is its ability to create videos using
rendered images.

Here are the key steps involved in using Blender images to
create videos:

• Storyboard:
The first step in creating a video using Blender images
is to create a storyboard. A storyboard is a visual
representation of the video that outlines the key scenes
and camera angles. It is important to have a clear vision
of the video before starting to create the images.

• Scene Set-Up:
Once the storyboard is complete, the next step is to set
up the scenes in Blender. This involves creating the 3D
models, setting the lighting, and choosing the camera
angles. It is important to ensure that the scenes are
consistent with the storyboard and that they will render
correctly.

Fig. 1. A sample showing pedestrians, different vehicles, double yellow solid
lines, traffic lights, stop sign and arrows on the road.

Fig. 2. Left: A visualization during a traffic stop, Right: Zoomed in view of
traffic lights showing more details such as arrows and different colors (when
applicable).

• Image Rendering:
After the scenes are set up, the next step is to render
the images. This involves using Blender to create
high-quality images that will be used to create the video.
It is important to render the images at a high resolution
to ensure that they look good when combined to create
the video.

• Video Editing:
Once the images are rendered, the next step is to edit
them together to create the final video. This involves
using a video editing software or a python script to
combine the images, add transitions, and add audio.

• Exporting:
Finally, the video must be exported in a suitable format
for distribution. This may involve choosing a suitable
resolution, file format, and compression settings.

Blender is a powerful tool that can be used to
create high-quality images and videos. Using Blender
images to create videos requires careful planning and
attention to detail. By following the process outlined in
this report, users can create professional-looking videos
that showcase their creativity and technical skills.

II. CHECKPOINT 2 : ADVANCED FEATURES

For checkpoint 2, we had to introduce following features:

• Vehicles:
Here, we need to classify (identify different vehicles) and
subclassify them (identify different kinds of a type of ve-
hicle). More particularly, Cars (Sedan, SUV, hatchback),
Pickup trucks, Trucks, Bicycle, Motorcycle.
For this, we trained networks on nuScenes dataset
and Stanford car classification dataset, but those
networks lacked accuracy in our data. Still ResNet-18



Fig. 3. Various scenarios showing different vehicles such as cars, trucks,
motorcycles, etc.

Fig. 4. Various scenarios showing different objects such as dustbins, traffic
poles, traffic cones.

based pre-trained model performed fairly accurwith our
data, with in-depth classes like brand and make of the car.

• Traffic lights:
Additionally to the previous checkpoint, classify arrows
on the traffic lights here.

• Road signs:
Along with the previously mentioned sign boards, you
should also indicate road signs on the ground such as
arrows

• Objects:
You also need to indicate additional objects like dustbins,
traffic poles, traffic cones and traffic cylinders as their
respective 3D models in the renders.

III. CHECKPOINT 3 : BELLS AND WHISTLES

– Break lights and indicators of the other vehicles:
The detection and display of vehicle brake lights
and indicator signals can assist the navigation
module in making more informed decisions when
changing lanes, ultimately improving driving safety
and efficiency.

– Pedestrian pose: You need to identify pedestrian
pose each frame instead of just classifying them and
display them. For this we trained YOLO3D, which
gave poses of cars and pedestrians. Also we tried
classical approaches but merging them in Blender
was again a challenges we faced here.

– Parked and Moving Vehicles: Distinguish between
parked and moving vehicles and display (make it
subtle but identifiable). For this, we tried classical
optical flow methods, and the thought process was
even that if the car observed is outside the lane
contourds then we can call it parked otherwise
the vehiicles inside the lane are not. This would
nee time to render, thus dropped the plan. Also,

nuScenes dataset had pre-trained models to identify
parked and moving vehicles.

IV. PROCESS

– Finding Networks: The first step is to look for
networks that identify the above listed objects.
Using which, we obtain bounding boxes around
those objects.

– Obtaining Coordinates: The 2D coordinates of
the bounding boxes are stored in a csv file using
pre-trained YOLOv5 model.

– Obtaining Depth: The depth must be known to
place the coordinates in the world, since it represents
z-axis. For this, we use MiDaS and obtain outputs
of relative depths.

– Scaling: Since the outputs of different models are
in pixels of images of different sizes and the depth
is also relative, they need to be scaled together to
be placed in the blender world.

– Loading Objects: The objects can be loaded using
python script or modelled in the blender at specific
location, rotation and orientation.

V. NETWORKS USED

• Lanes:

– Network: YolovP2

– Dataset trained on: BDD100K dataset

– Command to obtain images with bounding boxes:
pythoncustomdemo.py −
−source../input/inputimage.jpg−−devicecpu−
−namecpuoutput

• Vehicles:

– Network:yolov3

– Dataset trained on:COCO dataset

– Command to obtain images with bounding boxes:
python3/home/sanya/Road −
sign − detection/yolov5/detect.py −
−weights/home/sanya/Road − sign −
detection/Pretrainedweights/best.pt −
−source/home/sanya/Desktop/CV/P3/P3Data/Sequences/frames

• Pedestrians:



– Network: YOLOv3

– Dataset trained on:COCO dataset

– Command to obtain images with bounding boxes:
python3/home/sanya/Road −
sign − detection/yolov5/detect.py −
−weights/home/sanya/Road − sign −
detection/Pretrainedweights/best.pt −
−source/home/sanya/Desktop/CV/P3/P3Data/Sequences/frames

• Traffic Lights:

– Network: yolov3

– Dataset trained on:LISA Traffic Lights dataset

– Command to obtain images with bounfing boxes:
pythondetect.py −
−source/home/sanya/Desktop/CV/P3/P3Data/Sequences/scene6/Raw/2023−
03−0315−31−56−front.mp4−−view− img−
−weightsweights/bestmodel12.pt − −img −
size608

• Road Signs:

– Network: YOLOv5

– Dataset trained on: Road Sign Detection, Kaggle

– Command to obtain images with bounfing boxes:
python3/home/sanya/Road −
sign − detection/yolov5/detect.py −
−weights/home/sanya/Road − sign −
detection/Pretrainedweights/best.pt −
−source/home/sanya/Desktop/CV/P3/P3Data/Sequences/frames

• Depth Map:

– Network: MiDAS

VI. CONCLUSION

We found some great repositories but they are not
renderable because it’s difficult to extract bounding box
coordinates. We also had to make sure that the csv files
generating for all the coordinates were in similar formats to
allow smooth rendering. Since output of several networks had
to combined together into a single blender world, all of those
networks generated output imaged in different sizes giving
bounding boxes coordinates in relative pixel values, all of
which had to be scaled to look uniform into a single blender
world which was a challenging task.

Fig. 5. Depth Frame

Fig. 6. Predicting Traffic light and Stop Sign

REFERENCES

[1] https://github.com/Anant-mishra1729/Road-sign-detection

[2] https://github.com/sovit-123/Traffic-Light-Detection-Using-YOLOv3Get-
the-Dataset

[3] https://pjreddie.com/darknet/yolo/

[4] https://www.geeksforgeeks.org/

[5] https://paperswithcode.com/

Fig. 7. Predicting Lanes



Fig. 8. Predicting Cars and Pedestrians

Fig. 9. Predicting Green Traffic Light

Fig. 10. Predicting Speed Limits

Fig. 11. 3D Bounding Box for Pose of Cars

Fig. 12. Rendered Image

[6] https://stackoverflow.com/

[7] https://github.com/

[8] https://colab.research.google.com/

[9]


