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I. PHASE 1: MONOCULAR CAMERA STRUCTURE FROM
MOTION

In this section, a detailed analysis of our implementation
of the monocular camera structure from motion(SFM) will be
presented. Our implementation of the SFM pipeline consists of
7 major steps: 1) Feature matching with SIFT. 2) Estimating
fundamental matrix with epipolar constraints. 3) Estimating
essential matrix from fundamental matrix. 4) Estimating cam-
era pose from essential matrix. 5) Linear triangulation and
nonlinear triangulation with Cheriality constraints checking.
6) Solve for perspective-n-points using linear and nonlinear
optimization. 7) Bundle adjustment for all input images.

A. Feature Matching with SIFT

The first step in our pipeline is to obtain feature matches
between each pair of monocular camera images. We used
SIFT as our feature-matching algorithm. Prior to finding the
feature matches between each pair of input images, the camera
intrinsic matrix has been found through a calibration procedure
and then the raw images have been rectified to account for
distortion. Figure 1 shows the feature matches found between
the first and the second image.

Fig. 1: Feature Matches found through SIFT

B. Estimating Fundamental Matrix with Epipolar constraints

The second step of our pipeline was to estimate the fun-
damental matrix between a pair of images using Epipolar
constraint. Through experiments, we have found that using
two layers of match outliers rejection, once with homog-
raphy RANSAC and then with fundamental matrix(8-point
algorithm with SVD clean-up that enforces rank=2 constraint)
RANSAC, provided not only faster but also more consistent
and accurate results. The threshold condition for fundamental
matrix RANSAC is |23, Fx1;| < e. Where 2, is the image
coordinates of a feature in the second image, x1; is the image
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coordinates of the same feature in the first image. F' is the
fundamental matrix between the two images calculated by
8-point algorithm. We believe this is because homography
RANSAC first reduced the search space of the fundamental
matrix RANSAC to a local minima that contains the global
minima. Figure 2 shows the feature matches of a pair of images
that first filtered by homography RANSAC. Figure 3 shows the
final result of the feature match inliers after RANSAC with
fundamental matrix. Once the inliers have been found, a final
estimated fundamental matrix was calculated using the same
8-point algorithm but with all the inliers.

Fig. 3: Feature match inliers after §-point algorithm RANSAC

Estimating Essential Matrix from Fundamental Matrix.
Using the estimated fundamental matrix found in the previous
step, we then calculated the Essential Matrix between an
image pair. Since we know the camera intrinsic K from
camera calibration, we can calculate the Essential Matrix
E = KT FK. However, since there might still be noises in the
calculated Essential Matrix, we have to enforce the epipolar
constraint by reconstructing the Essential Matrix with singular
value decomposition with rank reduction. E = UDVT then
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C. Estimating camera pose from Essential Matrix.
With the calculated Essential matrix above E = UDVT |

0 -1 0
let W = 1|1 0 0] . we can calculate the four camera
0 0 1

configurations as:
1) C, =U(;,3)andR; = UWVT
2) Cy=-U(:,3)andRy = UWVT
3) C3=U(:,3)andRz = UWTVT
4) Cy=-U(:,3)andRy = UWVT

D. Linear triangulation and nonlinear triangulation with
Cheriality constraints checking

With the four possible camera pose configurations found
through decomposing essential matrix in the previous step.
Next we used linear triangulation with Cheriality constraints
to rule out the three impossible camera pose configuration.
Figure 4 shows the linear triangulation result of the top-down
view of the features’ world coordinates in the four camera
pose configurations. To disambiguate the camera poses, we
then selected the pose that had the most number of features
satisified Cheriality constraints. Figure 5 shows the features’
wolrd coordinates with the selected camera pose. Once we
obtained the actual camera pose configuration, we then used
non-linear optimization to minimize the reprojection error to
improve the features’ world coordinates estimation. Figure 6
shows the comparison between the result of linear triangu-
lation and non-linear triangulation. It can be seen that non-
linear traingulation significantly improved the accuracy of the
estimated features’ world coordinates.
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Fig. 4: Linear triangulation results for 4 possible camera pose
configurations

E. Solve for perspective-n-points(PnP) using linear and non-
linear optimization.

Up to now we have obtained an estimated features’ world
coordinates using a pair of monocular camera images. To
register a third or more images’ features to the constructed
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Fig. 5: Features’ world coordinates in the selected camera pose
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Fig. 6: Comparasion between linear and non-linear triangula-
tion

scene, we first used PnP RANSAC to remove the outlier
features in the third image, which minimize the algebraic
error between the measured and reprojected features. Using the
remaining inlier features, we calculated the estimated camera
pose of the third image. Figure 8 shows the measured(SIFT)
and reprojected features using the camera pose found with
linear PnP. Due to the nature of nonlinearity of division and
reprojection in our system, the estimated camera poses are
inaccurate. Using the estimated camera poses from linear PnP
as initial guess, we then performed non-linear optimization,
which minimize the geometric reprogection error, to obtain
more accurate estimation of the camera poses. Figure 8 shows
the measured and reprojected features using the camera pose
found with non-linear PnP. The reprojected features are much
more closer to the measured featured with nonlinear PnP.
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Fig. 7: Features reprojection with linear and nonlinear Trian-
gulation

Fig. 8: Features reprojection with linear and nonlinear PnP

F. Bundle adjustment for all input images

Once we have registered all the images to the scene with
linear and nonlinear PnP, now we need to refine the poses
and 3D points together with bundle adjustment. With camera
poses and 3D points calculated with previous steps as the
initial guess, we used scipy.optimize.leastsq to minimize
the reprojection error. Figure 9 shows the result of bundle
adjustment.

II. PHASE 2: NEURAL RADIANCE FIELDS (NERF)

For the deep learning part of this project, we implemented a
simplified version of NeRF [1]. The main simplifications and
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Fig. 9: Bundle Adjustment Result

TABLE I: Reprojection error (pixel)

Linear Triangulation 54.9584
Nonlinear Triangulation 5.3380

Linear PNP 154.4969
Nonlinear PNP 19.9069

modifications are listed as follows which are also correspond-
ing to some challenges that we have encountered.

o We only used one network with dense sampling in each
ray instead of using two networks.

o The density output is based on a separate linear layer
which is different from the linear layer to generate the
internal feature output.

o For the first 500 iteration, we only randomly choose the
rays in the center area of the images.

The first challenge is that when we used a small sampling
rate with a single network, even after thousands of iterations,
the render result is still almost fully white. It was solved by
increasing the sampling rate to 1000. If we change to use two
networks, the sampling rate will not be that large.

The second challenge is that when we made the density and
internal feature output shares the same linear layer and added
some redundant ReLu layers, part of the render output is gray.
It was solved by the second modification.

The last modification was added to reduce the training time.
As a result, after 10000 iterations with sampling 4096 rays
per iteration, we trained a model that can render as shown in
Fig. 10. The other hyperparameters are chosen the same as
what is used in the NeRF paper[1].
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Fig. 10: Testing result for lego dataset



