
RBE/CS549: P2 - Buildings built in minutes - SfM
and NeRF

Shrishailya Chavan
WPI Robotics Engineering

Worcester Polytechnic Institute
schavan@wpi.edu

Sreejani Chatterjee
WPI Robotics Engineering

Worcester Polytechnic Institute
schatterjee@wpi.edu

Abstract—In Phase 1 we implement the Structure from Mo-
tion(SfM) procedure where we reconstruct a 3D scene and obtain
camera poses with respect to the given scenes. We start by
rejecting outlier correspondences between pairs of images using
the RANSAC algorithm. The fundamental matrix and essential
matrix are then estimated for the first two images, followed by
linear triangulation to estimate the 3D position of the points
in the scene. The camera pose and 3D points are then refined
using non-linear triangulation, and the process is repeated for
the rest of the images. Camera registration is performed using
PnP RANSAC, followed by non-linear PnP, and new 3D points
are added to the reconstruction. A visibility matrix is built to
capture the visibility of each 3D point from each camera, and
bundle adjustment is performed to refine the camera poses and
3D points in the scene. The final output is a 3D reconstruction
of the scene with high accuracy and completeness. In Phase
2, we have implemented Neural Radiance Fields (NeRF) by
synthesizing novel views of complex scenes by optimizing an
underlying continuous volumetric scene function using a sparse
set of input views. The algorithm represents a scene using
fully connected(non- convolutional) deep network, whose input
is a single continuous 5D coordinate(spatial location (x,y,z) and
viewing direction(theta, phi) and whose output is the volume
density and view independent emitted radiance at spatial location.
Furthermore, we also describe how to effectively optimize neural
radiance fields to render photorealistic novel views of scenes with
complicated geometry and appearance, and demonstrate results
that outperform prior work on neural rendering view synthesis.

Index Terms—SfM, NeRF, Radiance Fields, Photorealistic, 3D
Recontruction

I. PHASE I: CLASSICAL STRUCTURE FROM
MOTION(SFM) PIPELINE:

A. Overview:

In the 3D reconstruction of scenes using the Structure-
from-Motion (SfM) pipeline, the first critical step we take
is matching features between common points in the scene,
followed by eliminating any outliers using the RANSAC
algorithm. Once this is done, the Fundamental matrix is
estimated to relate the corresponding points of two images
captured from different views. The Essential matrix is then
computed using this matrix, and camera poses are estimated
and refined. The correct camera pose is selected using the
cheirality constraints through triangulation. This process is
repeated for n perspectives, and the re-projection error is
computed and minimized using bundle adjustment to refine

Fig. 1. SfM Pipline Architecture

the 3D reconstruction. Refer Fig. 1 for an overview of the
entire pipeline.

Fig. 2. Images of Unity Hall to perform SfM

B. Dataset:

The dataset had been provided for the assignment and
consists of a set of five images captured of Unity Hall. Fig. 2
depicts these images, which were captured using the Samsung
S22 Ultra’s main camera at an f/1.8 aperture, ISO 50, and a
shutter speed of 1/500 seconds. The camera used for capturing
these images was calibrated using the Ran-tan model, which
includes two radial parameters and one tangential parameter.
Therefore, the images in the dataset are distortion-corrected
and have been resized to a resolution of 800x600 pixels.

C. Feature Matching, Fundamental Matrix and RANSAC:

Having good features is critical for computer vision al-
gorithms to work accurately. The SIFT feature descriptor is
commonly used because of its high robustness in solving the
structure of motion problem. The dataset provided in Fig. 2
includes images of Unity Hall, along with a matching.txt file



Fig. 3. Feature matching between image 1 and 2 with Selected Inlieres using
RANSAC

for all five images. There are five images and four matching
.txt files, and each row specifies the matches across images
given a feature location in the ith image. The file format can
be describes as nFeatures: (the number of feature points of
the ith image - each following row specifies matches across
images given a feature location in the ith image and Each
Row: (the number of matches for the jth feature) (Red Value)
(Green Value) (Blue Value) (ucurrent image) (vcurrent image)
(image id) (uimage id image) (vimage id image) (image id)
(uimage id image) (vimage id image). The row includes the
number of matches for the jth feature, RGB values, and image
IDs. These values need to be extracted from the .txt files and
stored in a list of features in x, features in y, RGB values, and
feature flag map. The feature flag map contains 0s and 1s,
with 1 indicating that a point in the ith image matches with
other images. As the data can become noisy after applying the
SIFT feature descriptor, the RANSAC algorithm is used with
the fundamental matrix to eliminate outliers. The normalized
eight-point algorithm is used to calculate the fundamental
matrix, which is then retrieved from the normalized points.
To eliminate noise, the fundamental matrix F is made rank 2
by assigning zero to the last diagonal element, which helps
in obtaining the epipoles. The process of calculating the
fundamental matrix is shown in eq. 1, which is necessary
because the epipolar lines do not pass through the center of
point correspondences. Fig. 3 depicts the matching inlieres
between image 1 and 2 after RANSAC.


x1x′

1 x1y′
1 x1 y1x′

1 y1y′
1 y1 x′

1 y′
1 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
xmx′

m xmy′
m xm ymx′

m ymy′
m ym x′

m y′
m 1





f11
f21
f31
f12
f22
f32
f13
f23
f33


= 0

(1)

D. Essential Matrix Estimation:

To determine the relative camera poses between two images,
we use the Fundamental matrix and K matrix provided, which
contains the camera’s intrinsic parameters. The Fundamental
matrix is used to compute the Essential matrix, which is
decomposed using SVD. To enforce the diagonal elements to
be 1, 1, 0, we modify the Essential matrix. This provides
us with the relative camera poses between the two views,
which are in image coordinates and have been normalized
previously. Unlike the Fundamental matrix, which is in pixel

coordinates, these relative camera poses are in normalized
image coordinates.

E. Camera Pose Estimation from Essential Matrix:

The Essential matrix E is decomposed using SVD to obtain
camera poses with 6 degrees of freedom: 3 rotational and 3
translational. The camera center C and camera rotation R are
calculated using the formula presented in eq. 2.

C1 = U(:, 3)

R1 = UWV
T

C2 = −U(:, 3)

R2 = UWV
T

C3 = U(:, 3)

R3 = UWV
T

V
T

C4 = −U(:, 3)

R4 = UWV
T

V
T

(2)

Fig. 4. Comparison between linear vs non-linear triangulation for 1st two
images

F. Linear and Non-Linear Triangulation:

Linear triangulation is used to find the 3D point X in the
world from two camera poses and point correspondences, and
this process is repeated for all camera poses while ensuring
that the reconstructed 3D points have positive Z values,
also known as depth positivity constraints. Our goal is to
calculate the unique camera pose out of four by removing
ambiguity, which is achieved through cheirality conditions: the
reconstructed points must be in front of the cameras and satisfy
r3(X − C) < 0, where r3 is the third row of the rotational
matrix. After linear triangulation, we aim to minimize the re-
projection error between the actual and re-projected 3D point
locations. Algebraic error is minimized in linear triangulation,
while geometric error (i.e. re-projection error) is minimized
in non-linear triangulation, which is more meaningful. We
use the scipy.optimize.least squares function with the trust
region field to refine the location of 3D points based on the
initial guess from linear triangulation. The re-projection error
is defined as shown in eq. 3. Fig. 4 depicts the comparison
between linear and non-linear triangulation between image 1
and 2 from the dataset.

∑
j=1,2

u
j −

P
jT
1 X̃

P
jT
3 X

2

+

v
j −

P
jT
2 X̃

P
jT
3 X

2

(3)



G. Linear, RANSAC, Non-Linear Perspective-n-Points(PnP):

Given a set of corresponding 2D image points (x) and
correpsponding 3D points(X), along with the intrinsic camera
matrix K, we can estimate the camera pose parameters R
and C through the perspective-n-point problem. To remove
the influence of K on the 2D points, we normalize them using
K−1∗x. To obtain a linear PnP solver matrix for SVD decom-
position, we need at least six 2D-3D point correspondences.
The resulting 3 × 4 pose matrix RT consists of the rotation
and translation components, where the first three columns
correspond to the rotation matrix. Ideally, this matrix should
be orthonormal, but practical errors may lead to deviations.
To enforce orthonormality, we use SVD decomposition and
multiply only the U and V matrices. The translation vector t is
obtained by computing −R−1(RT4), where RT4 corresponds
to the fourth column of RT . However, PnP estimation with
just six points can be highly erroneous, so we use RANSAC
with a reprojection error threshold of 5 to eliminate outliers.
After obtaining the pose estimates from RANSAC, we refine
the results using non-linear least squares optimization with
the trust region method in the scipy.optimize.least squares
library. To speed up the optimization, we convert the rotation
matrix R to a 1× 4 quaternion vector and concatenate it with
the translation matrix t (1 × 3) to create a 1 × 7 parameter
vector for the optimizer.

Fig. 5. 3D Reconstruction before and after Sparse Bundle Adjustment

H. Bundle Adjustment:

We observed that the non-linear optimization of the camera
pose and 3D points tended to yield coarse-level refinement,
as larger reprojection errors resulted in more effective op-
timization. To achieve more accurate 3D reconstruction, we
performed bundle adjustment to further optimize all estimated
camera pose parameters and 3D points together until the spe-
cific camera under registration was considered. Bundle adjust-
ment requires creating a sparsity matrix that records whether
a 2D point observation belongs to a particular parameter. For
instance, we had N image points, N3d world points, and nC

cameras, where each camera had six extrinsic parameters (i.e.,
Rotation: roll, pitch, yaw; Translation: cx, cy , cz). The sparsity
matrix Mba has dimensions of 2N × (N3d × 3 + nC × 6),
where if the image point at index 12 in N corresponds to the

world point at index 12 in N3d, then the elements of matrix
Mba that relate them will be 1. The sparse matrix is then
sent as the Jacobian sparsity parameter to the least squares
optimizer in the scipy library using the ’trf’ method. Fig. 5
shows the final 3D reconstruction of the pipeline before and
after bundle adjustment. We can see the points(blue) obtained
before bundle adjustment are sparsely distributed. On the other
hand the points (red) obtained after bundle adjustment are
more accurate and compactly distributed.

I. Results and Analysis:

Fig. 6. Reprojection Error after each step

• Obtaining good features is the most critical step for any
computer vision pipeline. In this case noisy feature will
end up with noisy F matrix. RANSAC is used here to
curb the noise in features, but we observed RANSAC
does not always generate the same result. After running
for 2000 iterations we did not find any consistency in the
output.

• We observed the optimization time for least square to
be pretty slow. This may be improved by using other
optimization algorithms.

• Fig. 6 shows the reprojection errors in each step

II. PHASE II: NEURAL RADIANCE FIELDS

A. Input Values to Model

The Dataset that we have is of images of a lego structure
as seen in Figure below. The given Dataset also provides
us with camera poses of those images (i.e. camera to world
transformation matrices).



Fig. 7. Image from Lego Dataset

Now, in here we have classic volume rendering. Therefore,
due to this each image pixel in the image is treated as a ray
in real world and further we will sample points on that ray to
get out input for the model. However, befor that we need to
convert everything to world co-ordinates, this can then help us
to specify the ray direction and find 3D spatial co-ordinates.

1) Ray Generation: We are supposed to generate rays
from each pixel of the image as mentioned above. A typical
formulation of ray looks like below equation:

Fig. 8. Ray Equation

In above equation ’o’ is the origin, ’t’ is the sampling
parameter and ’d’ is the direction.

In our case our origin for the ray will be the pixel position
of the image. The direction is a unit vector along the vector
joining the camera center and the particular pixel position.
However, initially all are values are in 2d image plane and in
pixel coordinates.

We need to follow below steps to get the rays:-
• Firstly, we need to convert the image pixel coordinates to

normalized coordinates with respect to to camera center. The
COLMAP frame is (X,-Y,-Z). Additionally, we have Z = -1
has been assumed.

• Secondly, we now have a ray direction with respect to the
camera frame.When we multiply the ray direction vector by
the camera to world transformation matrix (only rotation part),
we will have this ray vector converted to world frame and
finally, we get the ray direction by dividing by the magnitude
of the vector.

• Finally, the origin of the ray is the translation part of the
camera to world transformation matrix.

2) Sample Points: Now, after that we have the direction and
origin of the ray and now we need to decide only sampling

parameter to generate a ray. Furthermore, for sampling pa-
rameter, we will perform uniform sampling along the ray by
adding some noise so that the model is exposed to new data
and which will help us to get better results.

3) Positional Encoding: Further, for us to get better results
and render high frequency features we will be using positional
encoding. Below is given encoding function that has been used
in NeRF official paper. In our function we have 6 terms for
encoding. All the input values are encoded separately before
we input it to the network for training.

Fig. 9. Positional Encoding Equation

B. Network- Multi Layer Perceptron

The data which is 5D is given to our Network as input
which is a fully connected layers(Multi-Layer Perceptron) and
giving us the output as volume density with RGB value at the
particular sample point. The network architecture can be seen
in the below picture.

Fig. 10. Neural Network Structure

In our Network implementation we have used a small
network relative to the one mentioned in official paper. The
input to the network are both spatial location and direction
unlike the one mentioned in paper where direction input is
given later while training only for the RGB values. This was
done to get better results.

C. Volume Rendering

The output we get from the Network is RGB color value
and volume density at a different locations. Due to this we
tend to use these predicted values for rendering of a 3D
scene. Furthermore, the prediction values that we get from the
network are given into the classical volume rendering equation
to derive the color of one particular point. The equation for
the following is mentioned below:-

Additionally using values of volume densities, we initially
calculate the transmittance until we reach a particular sampling
position and then multiply it with predicted color at that
particular position to get the final color in the radiance field.
We repeat this similar process for all the pixels in the images.



D. Loss Function

After we get the RGB values by performing 3D volume
rendering we can just find Photometric loss between the
Predicted Color values and Actual Image Values.

E. Network training parameters

Following are the parameters used to train Train NeRF deep
learning model:

• Epochs = 100000
• Mini Batch size = 40
• Near point = 2
• Far point = 2
• Number of samples on 1 ray = 32
• Learning rate = 5e-3
• Number of terms in Encoding Function = 6
• Image input size = 100 x 100

F. Results

The Loss plot of the network with 100000 epochs has shown
been below. Also, a sample rendered image can be seen after
100000 epochs. A sample gif has been attached with the results
made with the predictions on the test set.

Fig. 11. Loss Plot

III. CONCLUSION

We recreate the SfM Pipeline in this project for Phase I
where we reconstruct a 3D scene while obtaining camera
poses for each scenes. We observe the importance of good
features in the pipeline and the advantage of optimization. We
also implement the NeRF pipeline in Phase II. If we train
the model with 1000 epochs as well we get good results, as
we increase the number of epochs we get much more better
results. Furthermore, if hierarchical sampling is used along
with a network suggested in the original paper, we can obtain
much more better results. If we use full sized images (800
x800), and use more number of samples along the ray, we can
get sharp results.

REFERENCES

[1] https://arxiv.org/pdf/2003.08934.pdf
[2] https://github.com/facebookresearch/neuralvolumes
[3] https://rbe549.github.io/spring2023/proj/p2/


