
RBE/CS549: Computer Vision
Project 2 - Building built in Minutes: SfM and

NeRF
Shreya Bang

M.S. Robotics Engineering
Email: srbang@wpi.edu

Using 3 Late Day

Rajus Nagwekar
M.S. Robotics Engineering

Email: rmnagwekar@wpi.edu
Using 3 Late Day

Abstract—Phase 1 focuses on estimating a three dimensional
structure from two-dimensional image sequences which are
related to each other by change in camera motion, which is
referred to as Structure from Motion.

In Phase II, we have implemented Nerf: Neural Radiance Field
for synthesizing novel views of complex scenes by optimizing a
continuous volumetric scene given a sparse set of input views.

Index: SfM, Nerf, Volume Rendering

I. PHASE 1: TRADITIONAL APPROACH

A. Overview

The goal of the project is to understand how to create
3D structures from a dataset of 2D images using traditional
methods of Structure from Motion (SfM). The project pipeline
involves several steps, such as finding matching features,
removing outliers using RANSAC, and estimating the Fun-
damental Matrix. Other steps include estimating the Essential
Matrix based on Epipolar geometry, refining camera pose,
performing Perspective-n-point (PnP) estimation, building a
visibility matrix, and Bundle Adjustment. Each step is im-
plemented in separate modules, and the program flow is
controlled by the wrapper.py module.

Fig. 1: Feature Matching Using SIFT

B. Fundamental Matrix

The feature point correspondences from the text files were
converted to a format suitable for use in the pipeline. Using the
epipolar constraint, we estimated the inlier-feature correspon-
dences by estimating the Fundamental matrix and performing
RANSAC. The resulting inliers were shown in the output of
the inliers function. We used the normalized 8-point algorithm

to compute the Fundamental matrix for images 1 and 2, which
involves solving a linear solver matrix generated by stacking
the product of 8-point correspondences using singular value
decomposition. RANSAC was used to obtain a better estimate
of the Fundamental matrix.

Fig. 2: Feature Matching After RANSAC

C. Essential Matrix

After obtaining the Fundamental matrix and the camera
intrinsic matrix, we used them to estimate the Essential matrix
E. We decomposed E to obtain four possible poses mathe-
matically, consisting of rotation R and translation C matrices.
These poses correspond to the pose of the second image, with
the first image considered to be in reference alignment. In the
reference alignment, R is a 3x3 identity matrix and C is a 3x1
zero matrix.

D. Linear Triangulation

Linear Triangulation involves finding the 3D coordinates of
the world points from feature correspondences, camera matrix,
and camera poses. One 2D-3D correspondence provides us
with two equations. A single 3D point and its projections
in both images form two lines in 3D space. Ideally, these
lines should intersect at a point, which is the solution to the
triangulation problem. However, if the lines are non-coplanar,
which is usually the case, we cannot find an exact solution, so
we try to find the best approximation instead. Each perspective
projection gives us two equations, resulting in a total of
four equations, but these equations have an unknown scale
parameter unique to each projection. Therefore, we have five
unknowns (X, Y, Z, s1, s2) in an under-determined system



that cannot be solved. To eliminate the scale parameters, we
use the cross product of a vector with itself, which is equal
to zero. We create a system of linear equations and solve it
using SVD.

Fig. 3: Linear Triangulation

E. Non-Linear Triangulation

After obtaining 3D points from linear triangulation, we can
improve their accuracy by applying non-linear optimization.
The initial estimates from linear triangulation are used to
minimize the reprojection error between the actual points and
the reprojected points. We use the trust region field method,
which is implemented in the scipy.optimize function. We found
that running the optimizer for each point correspondence leads
to faster convergence than running it once for all the estimated
3D points.

F. PnP

To include features from additional images in the scene, we
used PnP RANSAC to eliminate outlier features and determine
the estimated camera pose of the third image using the
remaining inliers. However, the estimated camera poses were
inaccurate due to the nonlinearity of division and reprojection
in our system. To obtain more accurate estimations of camera
poses, we used the estimated camera poses from linear PnP
as initial guesses and performed non-linear optimization to
minimize the geometric reprojection error. The reprojected
features were much closer to the measured features after
applying nonlinear PnP.

G. Bundle Adjustment

After registering all the images to the scene using both linear
and nonlinear PnP, we proceeded to refine the camera poses
and 3D points using bundle adjustment. We utilized the initial
guesses for the camera poses and 3D points that we obtained

Fig. 4: Non Linear Triangulation

Fig. 5: Camera Pose Disambiguation

from the previous steps, and utilized scipy.optimize.leastsq to
minimize the reprojection error.

II. PHASE 2:DEEP LEARNING APPROACH

A. Overview

In Phase II, we have implemented Neural Radiance Fields
(NeRF) to synthesize novel views of complex scenes by opti-
mizing an underlying continuous volumetric scene function
using a sparse set of input views. NeRF takes input as a
single continuous 5D coordinate (spatial location (x, y, z)
and viewing direction (θ, ϕ) and provides the output as the
volume density and emitted radiance which depends on the
view. Further, We have synthesized views by querying 5D

Step Error
Linear Triangulation 211.37
Non-Linear Triangulation 137.71
Linear PnP 5102.10
Non-Linear PnP 4517.68
Bundle Adjustment 732.22

TABLE I: Reprojection Errors



Fig. 6: Bundle Adjustment

coordinates along camera rays and using volume rendering
techniques to project the output emitted color c = (r, g, b) and
volume density σ into an image.

Fig. 7: An overview of Neural Radiance Field Scene Repre-
sentation

B. Ray Generation and Stratification

In order to generate rays for a given camera position and
orientation, NeRF uses the pinhole camera model. Rays are
cast from the camera through each pixel in the image plane,
and their directions are calculated based on the camera position
and orientation. Then, for each ray, NeRF samples a set of
points along the ray and calculates the radiance at each point.
For sampling parameter, we are doing uniform sampling along
the ray with some added noise which results in better results
as model gets exposed to more data.Then, the radiance values
are used to generate a color value for the corresponding pixel
in the final image.

C. Positional Encoding

Positional encoding is used to embed the spatial information
into the input to the network in a way that allows the network
to get better results and render high frequency features. This
is achieved by encoding the coordinates of each point as a
series of sine and cosine functions of different frequencies,
which are added to the input features before being fed into the

network. This encoding allows the network to better capture
the complex spatial patterns.

D. Network

The architecture used is shown in figure 08. This is a
deep fully connected neural network without any convolutional
layers which can be referred to as a multilayer perceptron.
NeRF takes spatial location (x, y, z) and viewing direction
(θ, ϕ) as inputs and generates a color (R, G, B) and volume
density σ for each point. The positional encoding of the input
is passed through 8 fully-connected ReLU layers, each with
256 channels. A final layer outputs the emitted RGB radiance
and volume density at position x, as viewed by a ray with
direction d.

Fig. 8: Fully-connected Network Architecture

E. Volume Rendering

After processing the input through the network, the output
consists of RGB color values and volume density for a given
location in the 3D scene. These predictions are then used to
render the scene by plugging them into the volume rendering
equation. The equation takes into account the predicted color
and density values to derive the final color for a specific
point in the scene. After performing 3D volume rendering
and obtaining the RGB color values, photometric loss was
calculated by comparing the predicted color values with the
actual image values.

F. Implementation

Following are the parameters used to train NeRF model:
1) Epochs = 3000
2) Mini Batch size = 4096
3) Optimizer = Adam
4) Learning rate = 5e-3

Due to the period required to train the model, we could train it
for 3000 iterations. Also considering training time, we resized
the input images as 100x100.



G. Results

The training loss is plotted in Fig.09. The rendered image
after 3000 epochs has been illustrated in Fig.10. Further, we
tested rendering for one image, which is illustrated in Fig.12
against the ground truth shown in Fig.11.

Fig. 9: Loss

Fig. 10: Image Output after training

Fig. 11: Ground Truth

Fig. 12: Test Image Output


