
RBE/CS 549 Computer Vision
P1 - SfM and NeRF

Uthiralakshmi Sivaraman
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA
usivaraman@wpi.edu

Using one late day

Noopur Koshta
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

nkoshta@wpi.edu

Fig. 1. DataSet

Abstract—In this project, we are reconstructing a Building’s
3D structure from different views using epipolar geometry
calculations, Non-linear Triangulation, Perspective N Points and
Bundle Adjustment and Synthesizing novel views of complex
scenes by optimizing an underlying continuous volumetric scene
using NeRF. We have used tiny NeRF for our implementation.

Index Terms—SfM, NeRF

I. PHASE 1 : BUILDINGS BUILT IN MINUTES -
STRUCTURE FROM MOTION

The most important phase in the 3D reconstruction of
scenes, or SfM pipeline, is feature matching from common
spots in the scene and removing outliers using RANSAC
algorithm. The next step is to estimate the fundamental ma-
trix, which connects the corresponding points of two images
taken from different perspectives. The essential matrix is then
calculated using this matrix. Linear and Non Triangulation
is used to estimate camera postures and choose the best one
based on cheriality restrictions. We repeat this process for n
perspectives, at which point we compute the re-projection error
and attempt to use bundle adjustment to reduce this non-linear
re-projection error.

A. Dataset

The data given is a collection of five pictures of Unity Hall,
WPI. The five photos were captured by the main camera of
the Samsung S22 Ultra at f/1.8, ISO 50, and 1/500 sec.

With two radial parameters and one tangential parameter,
the Ran-Tan Model is used to calibrate this camera. The
images have been distortion corrected and have been scaled to
800 × 600 pixels.

B. Feature Extraction

For a computer vision algorithm to function, a good feature
is still essential. SIFT, a feature descriptor with strong robust-
ness in structure of motion problems, is used. Fig. 2 presents

Fig. 2. Feature Matching before RANSAC

the information below: Images of the matching.txt file for all
5 pictures of Unity Hall. There are four ”.txt” files and five
photos total. It includes nFeatures: (the ith image’s number of
feature points; the next row’s specification of matches between
photos based on an ith image’s feature location; and

In each row: (Jth feature matches as a percentage) Red,
Green, and Blue values are represented by (ucurrent image),
(vcurrent image), (image id), and (uimage id image) (vimage
id image). From the ”.txt” file, we must extract these values.

C. Fundamental Matrix

After SIFT feature descriptor, data becomes noisy, so
RANSAC is employed with a basic matrix that has the
most Inliers possible. To generate the fundamental matrix,
we apply the normalized 8-points algorithm. We normalize it
since epipolar lines don’t always coincide with correspondence
centers of points. With these normalized points, we compute
the fundamental matrix, and then we extract the original
fundamental matrix. Owing to noise in correspondances, F
can have full rank, or 3, but we must reduce it to rank 2 by
giving the final diagonal element a value of zero, and this
is how we obtain the epipoles. Nevertheless, we must first
comprehend epipolar geometry in order to comprehend what
a fundamental matrix is. The intrinsic projective geometry



Fig. 3. Feature Matching after RANSAC

separating two viewpoints is known as the epipolar geometry.
It is independent of the scene structure and only depends on the
internal parameters (K matrix) of the cameras and the relative
position.

D. Essential Matrix

Relative camera Poses needs to be found between two
images and using Fundamental matrix computed above and
K matrix given which has the intrinsic values of camera in it
Essential matrix is computed and is Decomposed using SVD.
It’s diagonal elements are again enforced to 1,1,0 due to this.
This gives us the relative camera poses between two views.
Assuming that the cameras adhere to the pinhole paradigm,
the essential matrix is another 3*3 matrix with some additional
attributes that connect the appropriate spots (unlike F).

E. Camera Pose Estimation and Cheriality Condition, Trian-
gulation

The six degrees of freedom (DOF) in the camera pose
are rotation (Roll, Pitch, Yaw) and translation (X, Y, Z)
of the camera with respect to the environment. The four
camera pose configurations (C1,R1), (C2,R2), (C3,R3), and
(C4,R4), where CR3 is the camera center and RSO(3) is the
rotation matrix. Hence, the camera pose can be expressed as
P=KR[I3×3C].From the E matrix, these four pose configura-
tions can be calculated.

Linear triangulation is used to discover the X (3D-point)
in the world using two camera postures and point correspon-
dence. To identify the X (3D point in front of the camera
having a positive Z value), we do this for all camera postures.
Depth positive limitations refer to this.

By reducing the dis-ambiguity, our objective is to deter-
mine the unique camera posture out of 4. You can achieve
this by applying the cheirality criteria, which state that the
reconstructed points must lie in front of the cameras and that
r3(X-C) 0. R3 is the third row of the rotational matrix.

We attempt to reduce the re-projection inaccuracy of the
position of 3D points between actual points and re-projected

Fig. 4. Initial Triangulation with dis-ambiguity

Fig. 5. Linear Triangulation vs Non Linear Triangulation -1

points after obtaining linear- triangulated 3D points. In non-
linear triangulation, we attempt to minimize geometric error,
also known as re-projection error, which is more significant
than algebraic error, which is minimized in linear triangula-
tion. So, we adjust the placement of 3D points in an effort
to minimize the re-projection error. The linear triangulation
provides us with a first estimate. Scipy.optimize function is
used to enhance using trust region field optimization.

F. PnP

Given a collection of n 3D points in the real world, along
with their 2D image projections and intrinsic parameters, we
can use linear least squares to estimate the 6 DOF camera
posture. This is known as the Perspective-n-Point problem
(PnP). Once we have 2D-3D correspondences (X-x), we can
register a new image through nonlinear optimization.

To solve the RT (3X4) matrix using SVD, we require at
least 6 2D-3D correspondences. The resulting RT matrix has
rotational and translational elements, and the 3 columns of
the RT matrix represent the rotational elements, which are
orthonormal. To prevent errors, we enforce this orthonormality
by decomposing the SVD and only multiplying U and V. We



Fig. 6. Linear Triangulation vs Non Linear Triangulation -2

also check the determinant of the new R matrix, and if it is
-1, we multiply the R matrix by -1. The third column of the
RT matrix represents the translation vector.

We use RANSAC to reduce outliers by minimizing the
reprojection error. Once the linearly estimated camera pose
is obtained, we may fine-tune the posture to further mini-
mize the reprojection error, similar to triangulation. We re-
fine the camera position using Non-Linear PnP optimization
through Scipy.optimize. The Rotation matrix is converted into
a Quaternion to maintain orthogonality and translation vector
when passed for optimization.

G. Visibility Matrix and Bundle Adjustment

Bundle adjustment is a technique used in computer vision
and photogrammetry to simultaneously refine the 3D point
locations and camera poses that were estimated using the
previous steps of the pipeline. It is essentially an optimiza-
tion problem where the goal is to find the parameters that
minimize the difference between the observed image points
and the corresponding points projected from the estimated 3D
locations and camera poses.

The first step in bundle adjustment is to construct the
visibility matrix Vij that relates each camera i to the 3D point
j. This matrix indicates whether a particular point is visible in
a particular camera or not. Once this matrix is constructed, it
is used to construct a sparse matrix Mba of size 2N x (N3d3
+ nC6), where N is the number of image points, N3d is the
number of 3D points, and nC is the number of cameras. The
elements of Mba are set to 1 if a particular image point is
related to a particular 3D point by the visibility matrix, and 0
otherwise.

The goal of bundle adjustment is to find the parameters that
minimize the difference between the observed image points
and the corresponding points projected from the estimated 3D
locations and camera poses. This can be done using the trust
region reflective algorithm method of least squares, which is
more robust to sparse problems.

Once the bundle adjustment is completed, the 3D point
locations and camera poses are refined, resulting in higher

Fig. 7. Sparse Bundle Adjustment for all 5 camera using Scipy

accuracy and more optimal values. The refinement can be
compared before and after bundle adjustment to evaluate the
effectiveness of the technique.

H. Conclusion

The shape of the point cloud after bundle adjustment is still
not perfect. There are many reasons, initial feature mapping
is sensitive to RANSAC and perspective N points with more
than 6 pairs might provide with better results.

II. PHASE 2 : BUILDINGS BUILT IN MINUTES - NEURAL
RADIANCE FIELDS

In the Deep Learning portion, Neural Radiance Fields
(NeRF) will be implemented to create unique views of com-
plex scenes by refining a continuous volumetric scene function
using a small number of input views. A 5D continuous array
serves as the input for NeRF, with the first three elements
representing the spatial location’s 3D coordinates and the final
two providing the direction of the ray created by connecting
the specific picture pixel to the camera’s center. The RGB
color (radiance field) of the particular pixel and the volume
density at that exact spatial location are the NeRF’s outputs.
We have used tiny Nerf for our implementation.

A. Tiny NeRF

TinyNerf is a lightweight variant of the Neural Radiance
Fields (NeRF) architecture, designed to render high-quality 3D
images from a sparse set of input views. Here’s an overview
of the TinyNerf architecture:

• Input Encoding: The input to the network consists of a
set of 2D images, along with their camera poses and



Fig. 8. NERF -workflow

intrinsics. Each input image is first passed through a small
encoder network, which produces a set of feature vectors.

• Feature Aggregation: The feature vectors from all the
input images are then aggregated using a simple max-
pooling operation to produce a single, compact feature
vector.

• Network Body: The aggregated feature vector is then
passed through a multi-layer perceptron (MLP) network,
which consists of several fully connected layers with
ReLU activations. This network is responsible for learn-
ing the underlying 3D geometry and appearance of the
scene.

• Radiance Estimation: The output of the MLP network is
then passed through a final layer that produces the RGB
color and opacity values at each 3D point in the scene.
This is done using a softplus activation function to ensure
that the radiance values are always positive.

Overall, TinyNerf is a compact and efficient architecture that
can render high-quality 3D images with a small number of
input views.

B. Dataset and Workflow

A dataset of pictures of a Lego structure is available. We
also receive camera poses of the photographs that go with
them. NeRF involved the following steps:

1) To generate rays from each pixel of the image, we start
with the pixel position as the origin of the ray and a unit vector
along the vector connecting the camera center and the pixel
position as the direction. However, since all values are in the
2D image plane and in pixel coordinates, the following steps
need to be followed to obtain the rays:

• Convert the image pixel coordinates to normalized co-
ordinates with respect to the camera center, taking into
account that the COLMAP frame is (X,-Y,-Z) and assum-
ing Z = -1.

• Multiply this vector by the camera to world transforma-
tion matrix (rotation part only) to convert the ray vector
to the world frame.

• Obtain the ray direction unit vector by dividing the vector
by its magnitude.

• The origin of the ray will be the translation part of the
camera to world transformation matrix.

2) After obtaining the direction and origin of the ray, the
only remaining task is to decide on the sampling parameter
for generating the ray. We perform uniform sampling along
the ray with some added noise to expose the model to new
data, which can result in better outcomes.

3) To enhance the quality of the results and render high-
frequency features, we will be utilizing positional encoding.
The encoding function utilized in NeRF involves six terms for
encoding. Before inputting the values to the training network,
all input values are encoded individually.

4) The input data is fed into our network, which comprises
a series of fully connected layers. The network then provides
us with output in the form of volume density and RGB value
at the specific sample point.

5) The network’s output is comprised solely of the RGB
color value and volume density at a specific location. These
predicted values are used to render the 3D scene. To determine
the color of a particular point, we insert the predictions from
the network into the classical volume rendering equation. The
equation takes the following form:

We begin by calculating the transmittance until the specific
sampling position using the volume density. We then multiply
this with the predicted color at that position to obtain the final
color in the image, known as the radiance field. This process
is repeated for all pixels in the image.

6) After obtaining all the RGB color values through 3D
volume rendering, we can compute the photometric loss by
comparing these predicted color values to the actual image
values.

C. Network Training Parameters

Following are the parameters used to train Train NeRF
model:

Fig. 9. Loss Function



Fig. 10. Original Image

Fig. 11. Rendered Image

• Epochs = 1000
• Mini Batch size = 4096
• Near point = 2
• Far point = 6
• Number of samples on 1 ray = 64
• Learning rate = 5e-3
• Number of terms in encoding function = 6
• Image input size = 100 x 100

D. Conclusion

In conclusion, the initial results are good. The model was
trained for more time and epochs the results were same on this
image size. If we used full sized images (800 x800), had used

more number of samples along the ray, then only we could
obtain sharp results.

REFERENCES

[1] Mildenhall, Ben, et al. ”Nerf: Representing scenes as neural radiance
fields for view synthesis.” Communications of the ACM 65.1 (2021):
99-106.

[2] https://github.com/yenchenlin/nerf-pytorch.
[3] https://github.com/krrish94/nerf-pytorch.
[4] https://medium.com/swlh/nerf-neural-radiance-fields-79531da37734
[5] https://theaisummer.com/nerf/
[6] Large-scale bundle adjustment in scipy, ”https://scipy-

cookbook.readthedocs.io/items/bundleadjustment.html”


