
RBE 549: Project 2
Buildings built in minutes - SfM and NeRF

Deepak Harshal Nagle
Robotics Engineering

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: dnagle@wpi.edu
Telephone: (774) 519-8335

Irakli Grigolia
Computer Science

Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: igrigolia@wpi.edu
Telephone: (508) 373-3402

Abstract—This project aims to apply computer vision tech-
niques to reconstruct 3D scenes and estimate the camera poses
using a method called Structure from Motion (SfM). SfM is a
technique that utilizes a series of 2D images to reconstruct the 3D
structure of a scene and produce point cloud-based 3D models.
The principle of stereoscopic photogrammetry is used in SfM to
calculate the relative 3D poses of an object from stereo pairs by
using triangulation methods.

PHASE 1: CLASSICAL APPROACH

A. Estimating Fundamental Matrix

In stereo geometry, two camera poses are subject to an
epipolar constraint. This means that if a 3D point is projected
onto one of the camera poses, its corresponding projection on
the other pose must lie on a line. The relationship between the
two projections is captured by the Fundamental matrix.

The Fundamental matrix represents a system of linear equa-
tions with 9 unknowns, which can be solved using Singular
Value Decomposition (SVD). After solving the system, the
rank constraint is enforced by setting the last singular value
to zero and recomputing the Fundamental matrix.

Fig. 1. Matching Features

Fig. 2. Epipolar Lines

B. RANSAC

Fig. 3. Feature Matching After Ransac

RANSAC is a robust algorithm for outlier detection and
removal, which is commonly used in computer vision to refine
feature correspondences. It works by repeatedly sampling
subsets of the data and estimating a model from each sample.
The best model is then selected based on the number of inliers
it has, and these inliers are used to re-estimate the model. This



process is repeated until a satisfactory solution is found. In this
case, RANSAC was used to filter out incorrect matches and
improve the accuracy of the feature correspondences.

Some of the feature matches that we were given were a bit
off. To refine these correspondences, RANSAC was applied
with the Fundamental matrix as the underlying model.

C. Estimating Essential Matrix from Fundamental Matrix

The Essential matrix builds upon the concepts of the Fun-
damental matrix, by extending the relationship from the image
view to the camera view. This allows for the establishment of a
physical and geometrical constraint in the relative poses of the
two cameras in the stereo setup. In other words, it provides a
means of obtaining information about the spatial relationship
between the two cameras, beyond just their projection onto
the image plane.

This additional information can be used to recover the
3D structure of the scene, as well as the camera poses, by
triangulating matched points in the two views. The Essential
matrix is also useful in solving the stereo correspondence
problem, which involves finding the corresponding points in
each image pair.

Overall, the Essential matrix is a powerful tool for stereo
vision applications, providing critical information for 3D scene
reconstruction and other computer vision tasks.

D. Estimating Camera Pose from Essential Matrix

We utilized SVD and some mathematical techniques, as
stated in the problem description, to decompose the Essential
matrix into rotation and translation matrices. Additionally, we
took measures to ensure that the derived rotation matrix was
indeed a rotation matrix by performing SVD cleanup.

This process of decomposing the Essential matrix is crucial
for estimating the relative pose of two cameras observing a
scene. By obtaining the rotation and translation matrices, we
can determine the position and orientation of one camera with
respect to the other, allowing us to triangulate 3D points from
corresponding 2D image points. This is an essential step in 3D
computer vision and finds application in various fields such as
robotics, augmented reality, and autonomous vehicles.

E. Linear Triangulation

Linear Triangulation is the process of finding the 3D coordi-
nates of world points by using feature correspondences, cam-
era matrix, and camera poses. Each 2D-3D correspondence
provides two equations for each camera projection. Ideally,
the intersection of the two lines formed by a 3D point and its
projections in the two images should give us the triangulated
3D point. However, in practice, the lines are usually non-
coplanar, making an exact solution impossible. Instead, we
find the best approximation to the solution by solving a system
of linear equations using SVD. The scale parameters in the
equations are eliminated by exploiting the fact that a vector’s
cross-product with itself is zero. To ensure the correct solution,
a chirality check is performed, which ensures that the points
in front of the camera have positive Z-coordinates.

Fig. 4. Linear Triangulation Re-projection

Fig. 5. Linear Triangulation

F. Non-Linear Triangulation

After obtaining the camera’s actual pose, the next step is
to minimize the error between the re-projected world point
and the detected image point. While linear error reduction
is effective, it may not be optimal for the 3D world where
geometric error is more relevant. Therefore, we compute the
non-linear error and aim to converge the re-projected point
to obtain a more accurate world point. To achieve this, we
utilized the least squares function from scipy.



It is worth noting that the non-linear triangulation approach
provides more accurate results compared to the linear method.
This is because the non-linear method considers the non-
linearities in the camera’s projection model, which the linear
method does not account for. Additionally, the results of
the non-linear method are more consistent with the actual
3D world geometry, making it a more reliable approach.
Ultimately, accurate 3D reconstruction is essential for many
applications, including virtual reality, augmented reality, and
robotics. Therefore, using the most effective triangulation
method is crucial for achieving accurate results.

Fig. 6. Non-Linear Triangulation

Fig. 7. Linear Triangulation

Fig. 8. Non-Linear Triangulation

G. Perspective-n-Point (PnP)

Once we obtained optimized world coordinates for two
camera frames, we proceeded to estimate the pose of the other
four frames using all the available images. To compute the
camera poses, we employed the following methods:

1. Linear PnP: We solved a linear least squares equation
with 12 correspondences or 6 point correspondences to cal-
culate the new camera pose (R and T). We used the SVD to
extract the R and T values from the last row of VT.

2. PnP RANSAC: PnP is susceptible to outliers, which
can result in inaccurate camera poses. Therefore, if the re-
projection error for the new camera is less than a given
threshold epsilon, the points were added to the inlier set for a
more robust camera pose estimation.

3.Nonlinear PnP: Similar to triangulation, we computed the
geometric loss using least squares to further minimize the error
and obtain a more accurate camera pose.

Using the nonlinear PnP method, we obtained the camera
pose for each camera relative to the X points. We plotted these
camera poses along with the triangulated points for the Unity
hall and the other building dataset.

Additionally, the nonlinear PnP method was used to estimate
the camera poses of all the remaining frames, with each frame
being considered relative to the triangulated 3D points. This
helped in ensuring a consistent and accurate reconstruction of
the 3D scene.

H. Bundle Adjustment

After obtaining the camera poses and world coordinates,
the next step is to refine them using Bundle Adjustment. This



process involves optimizing the positions of both cameras and
points simultaneously.

1.Visibility Matrix: The visibility matrix is constructed
when reading the data files. As we read the ”matching” files for
each image, we build a matrix of all points (typically around
10,000 in Unity Hall files) and mark a 1 for each camera
column if the point is visible from that camera. This results
in an n x m size matrix for n points and m cameras.

2. Bundle Adjustment: The Scipy least square optimizer is
used in Bundle Adjustment, much like in previous sections.The
visibility matrix helps to reduce the computational require-
ments by specifying which jacobians need to be computed
and which can be skipped for faster processing.

During Bundle Adjustment, we aim to minimize the re-
projection error, which measures the difference between the
observed image points and the projected 3D points. This error
is minimized by adjusting the camera poses and 3D points
until the difference between the observed and projected points
is as small as possible.The least square optimization method
is an iterative process that minimizes the error by making
small adjustments to the camera poses and 3D points in each
iteration. The process continues until the error is minimized to
an acceptable level. In addition to reducing the re-projection
error, Bundle Adjustment also has the advantage of improving
the accuracy and consistency of the 3D reconstruction results.
It can also help to remove any outliers that may be present in
the initial reconstruction.

Overall, Bundle Adjustment is an essential step in refining
the 3D reconstruction results and obtaining accurate and
reliable camera poses and 3D coordinates.

Fig. 9. Before Bundle Adjustment

Fig. 10. After Bundle Adjustment

I. PHASE 2: DEEP LEARNING APPROACH

A. Introduction

NERF is an approach that lead to a new revolution in
3D scene representation, capable of synthesizing new views
of complex scenes by optimizing the underlying continuous
volumetric scene function with a sparse set of input views.
This approach represents a scene using a fully connected
network whose input is a single continuous 5D coordinate
(spatial position: (x, y, z) and viewing direction: (θ, ψ)) and
output is the volume density and the RGB pixel values at that
viewing direction.

B. Input Data

Official Lego tiny NeRF data is used which is openly
available on University of Berkeley website. In addition, x,y,z
positions and θ, ψ directions are also included.

Even though NeRF is a deep-learning approach, it also
involves classical approaches over the data before passing the
input to the network.

C. Generation of Rays

Here, we use classical volume rendering technique where
we consider any of the pixels in each image to be a ray in the
3D world.

First we use the conversion from pixel coordinates (u, v)
to the normalized coordinates (X, Y, 1) with respect to the
camera center.

The following equation describes a typical ray:
r(t) = o + td
Where, ’o’ is the origin of the ray (the location of the

pixel of the image with respect to the 3D world), ’d’ is the
direction of the ray (unit vector from camera center to the



image pixel), ’t’ is a parameter of the equation that is supposed
to be continuous, however, it will be sampled at intervals to
implement it in the program.

As we have the ray direction with respect to camera frame,
we apply the rotation matrix corresponding to the rotation
from camera to the world (obtained from the transformation
matrix). This results in the ray direction obtained in the world
coordinate. We further normalize it to a unit vector.

D. Point Sampling on the Ray

The points are sampled on the ray to obtain the values to
be used as the input to our model. We have performed linear
sampling, however, it works well with non-linear sampling as
well. Also, we add a minimal noise is the sample positions so
that the network is exposed to new data points thus, leading
to better results.

E. Positional and Directional Encodings

If the coordinates of points are directly passed, the network
gives very poor results, even if only a single image is passed.
This is because the network has a tendency to learn specifically
the low frequency features while ignoring higher frequencies.
Thus, we use the sines and cosines of point coordinates
(positional encodings) at different frequencies and pass them
as the input to the network, instead of the point coordinates.

Similarly, instead of directional input, we utilize the sines
and cosines of directional input at different frequencies, termed
as Directional Encodings.

F. Volumetric Rendering

The outputs of the NeRF network are the RGB values and
the volume density for the input location and the camera
direction. The outputs from the network are fed into the
volume rendering equation to obtain the color values at a given
world point. The classical volume rendering equation is given
below:

C ≈
N∑
i=1

Tiαici (1)

Where Ti are weights and ci are colors.

Ti =

i−1∏
j=1

(1− αj) (2)

αi = 1− e−(σiδti) (3)

The transmittance till the given sample point is calculated
using the density, followed by multiplying it with the RGB
colors at that position to obtain the final RGB values in the
image. Here is the exact formula for the same.

We perform the same process for all the sample points on
all the rays, thus the name radiance field.

G. NeRF: Network

The actual network involves fully connected networks
(Multi-Layer Perceptron) with the inputs being positional and
directional encodings and the outputs being the density and
the RGB values. The network involves skipped connection to
obtain more accurate results. The network involves ReLU and
Sigmoid activations.

Fig. 11. NeRF architecture

However, we will only use a simple 5 layered network
which takes both positional and directional encodings as input
and the density and the RGB values as the output from the
final layer, with ELU activations.

H. Network Parameters

For more accurate, we ran the network on the whole data,
rather than splitting it into mini batches.

Input image size = 100x100

near distance = 2

far distance = 6

Depth samples per ray = 32

Learning rate = 0.005

Number of encoding function terms = 6

Loss function to be minimized: Log of mean-squared loss
between predicted image (RGB values) and the actual image
values



I. Results and Plots

Fig. 12. Original Image

Fig. 13. Reconstructed 3D model

J. Conclusion

Considering the device constraints, the small sized network
that we used and the relatively smaller sized images, we
obtained good results and the 3-D model is visible. We created
a the original NeRF architecure which works in the code,
however, due to all these constrains, we used the smaller
network as described earlier. If we were to use the actual
network with complete network with the original images size,
we could obtain sharp results closer to the actual one.

REFERENCES

[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng (2020). NeRF: Representing Scenes as Neu-
ral Radiance Fields for View Synthesis. UC Berkeley, Google Research,
UC San Diego.


