
RBE 549 Project 2: Buildings built in minutes -
SfM and NeRF

Aabha Tamhankar
Masters in Robotics Engineering
Worcester Polytechnic Institute

astamhankar@wpi.edu

Miheer Diwan
Masters in Robotics Engineering
Worcester Polytechnic Institute

msdiwan@wpi.edu

Abstract—The following paper reports our implementation of
a classical method of Structure for Motion (SfM) and a deep
learning approach of Neural Radiance Fields (NeRF).

I. INTRODUCTION

Structure from motion (SfM) is a photo-metric range imag-
ing technique for estimating three-dimensional structures from
two-dimensional image sequences that may be coupled with
local motion signals. It is an important concept in the study of
computer vision and perception. In simple terms, SfM helps us
to recover 3D structure from the projected 2D (retinal) motion
field of a moving object or scene.

II. PHASE 1: TRADITIONAL APPROACH

Structure from Motion (SfM) can be defined as a method
used to reconstruct a 3D scene and simultaneously obtain the
camera poses of a monocular camera with respect to the given
scene. Given 5 images from a camera in motion, the goal of
the project is to estimate geometric values of the points in the
image and represent a 3D structure out of it.

The steps taken to implement SfM in the traditional ap-
proached have been explained in detail below.

A. Data Set

A data of 5 images of Unity Hall at Worcester Polytechnic
Institute captured using a camera in motion is provided.
The camera calibration has already been conducted, and the
images are undistorted and resized to 800×600 pixels. The
data regarding matches between corresponding points of each
image has also been provided using the SIFT keypoints and
descriptors. This data is stored in files named ”matching.X”,
where X is the image number, and this files stores matches of
Xth image with the remaining images. The matches from file
”matches.1” for image 1 and image 2 are shown in Fig.1.

B. Estimate Fundamental Matrix

The fundamental matrix, denoted by F , is a 3×3 (rank
2) matrix that relates the corresponding set of points in two
images from different views (or stereo images). The F matrix
can be found out using the epipolar geometry by inducing
epipolar constraint or correspondence condition given by,

x′ T
i Fxi = 0, (1)

Fig. 1. Matches from Image 1 and Image 2

where x and x’ are representations in first and second image
of a point X in 3D space.
So, we can calculate the 3×3 fundamental matrix by,

[
x′i y′i 1

]
∗

f11 f12 f13
f21 f22 f23
f31 f23 f33

 ∗

xiyi
1

 = 0 (2)

which is for one corresponding point in the images. Hence
for m correspondences, it would become:

 x1x
′
1 x1y

′
1 x1 y1x

′
1 y1y

′
1 y1 x′1 y′1 1

...
...

...
...

...
...

...
...

...
xmx

′
m xmy

′
m xm ymx

′
m ymy

′
m ym x′m y′m 1



f11
f21
f31
f12
f22
f32
f13
f23
f33


= 0 (3)

After normalising the image points, the equation II-B was
used to calculate fundamental matrices for each image. How-
ever, due to outlier correspondences, this fundamental matrix
may not be accurate. For getting pure inliers, 8-point RANSAC
has been performed on these sets of correspondences. These
points are then further used to calculate a more accurate
Fundamental Matrix. The fundamental matrix found was,



F =

−5.27102668e− 08 −3.19806614e− 05 1.38103802e− 02
3.45459495e− 05 2.50659714e− 06 −3.58130017e− 02
−1.57171086e− 02 3.44113041e− 02 1.00000000e+ 00


C. Estimate Essential Matrix from Fundamental Matrix

Essential matrix is used to calculate the camera poses
between any two images, which are further required for tri-
angulation and perspective. The essential matrix is calculated
using the formula

E = KTFK

, where where K is the camera calibration matrix or camera
intrinsic matrix and F is the fundamental matrix. However,
since we cannot get an exact value of calibration due to
noise, we reconstruct the essential matrix using single value
decomposition with value (1,1,0) such that,

E = U

1 0 0
0 1 0
0 0 0

V T (4)

The essential matrix found was,

E =

 0.00249426 −0.61474787 0.11661446
0.66317523 0.04516326 −0.73326896
−0.15898169 0.77663055 0.0229181


D. Estimate Camera Pose from Essential Matrix

By geometry, four camera poses (C1, R1), (C2, R2), (C3,
R3) and (C4, R4) were then obtained using the essential
matrix. Though all these poses are correct in theory, practically
only one camera pose is feasible, which lies in front of the
image. The four camera poses found were:

R1 =

0.14380224 0.18499731 0.97216095
0.2301884 −0.96167888 0.14895311
0.96246258 0.20236038 −0.18087581


C1 =

[
0.78005122 0.14309272 0.60913428

]

R2 =

0.14380224 0.18499731 0.97216095
0.2301884 −0.96167888 0.14895311
0.96246258 0.20236038 −0.18087581


C2 =

[
−0.78005122 −0.14309272 −0.60913428

]

R3 =

0.99722602 0.01775794 0.07228361
−0.020878 0.99887234 0.04263996
−0.0714449 −0.04403082 0.99647223


C3 =

[
0.78005122 0.14309272 0.60913428

]
R4 =

0.99722602 0.01775794 0.07228361
−0.020878 0.99887234 0.04263996
−0.0714449 −0.04403082 0.99647223



C4 =
[
−0.78005122 −0.14309272 −0.60913428

]
The ”correct” camera pose which is possible in practicality

is the one where the 3D world point X lies in front of the
camera. This can only happen under the condition,

r3(X − C) > 0,

where r3 is the third row of the rotation matrix (z-axis of
the camera). By this cheirality condition, we find the feasible
camera pose in the configuration (C,R,X).

E. Linear Triangulation

The camera pose (rotation and translation matrices) found
can be used to further calculate the 3D world points from
the images. This can be done by non-linear triangulation of
projection matrices of every pose and image points.

[
x1
1

]
× P1[

x2
1

]
× P2

...[
xn
1

]
× Pn


×
[
X
1

]
= 0 (5)

,where x is the image points and Px is the projection matrix
of that point. SVD was performed on the first term of left side
of the equation, and a singular vector of world points was
obtained, which is the second term of the left side.

F. Non-Linear Triangulation

After linear triangulation, 3D points are obtained from 2D
image points. However, the position of these world points can
be inaccurate due to geometric error. Non-linear triangulation
helps to overcome this error by optimizing the least square
errors.

ϵg = ((P1X)/P3X)− x)2 + ((P2X)/P3X)− y)2 (6)

,where Px is the projection matrix row of that image point.
Thus, we can reduce the geometric error causing inaccuracy
in the world point plotting.

G. Perspective-n-Points

With the given camera matrix, 3d world points and 2D
image points, a 6 degree of freedom camera pose can be
calculated which gives the exact position and orientation of
the cameras. Linear PnP can be performed with the help of
common featured already obtained from non-linear triangula-
tion. The 2D points found are normalized with camera matrix
using

K−1x

Using 6 such 2D image points, and their corresponding 3D
world co-ordinates, we are able to compute the camera pose.
However, since the 2D image points may have certain outliers,
the PnP thus obtained can be prone to error. Thus we can



Fig. 2. Linear and Non-Linear Triangulation for Image 2 and Image 3

Fig. 3. Linear and Non-Linear Triangulation for Image 1 and Image 3

Fig. 4. Linear and Non-Linear Triangulation for Image 1 and Image 4

Fig. 5. Linear and Non-Linear Triangulation for Image 1 and Image 5

perform RANSAC on the undertaken 2D-3D correspondences
(more than 6) to make the camera pose obtained more robust.
Similar to triangulation, the linear PnP cannot account for
geometric error, thus we see re-projection errors in our output.
This reprojection error can be minimized using non-linear PnP.

min
C,q

Σi=1,J(u
j − P jT

1 X̂j

P jT
3 X̂j

)2 + (vj − P jT
2 X̂j

P jT
3 X̂j

)2 (7)

where Pj is the column of the projection matrix formed
in triangulation, and X̂j is the homogeneous form of world
co-ordinates. This form used quarternions to optimize error
and can thus be classified as non-linear PnP.

Reprojection Error
Image LT NLT L-PnP NL-

PnP
Img1-
2

161.99 125.25 - -

Img2-
3

4958.75 3623.73 5221.12 4546.35

H. Bundle Adjustment and Visibility Matrix

The camera poses still need refinement initialized by mini-
mizing reprojection error.

min
{Ci,qi}i

i=1,{X}J
j=1

Σi=1,IΣj=1,JVij((u
j−P

jT
1 X̂j

P jT
3 X̂j

)2+(vj−P
jT
2 X̂j

P jT
3 X̂j

)2)

(8)
Here,Vij is the visibility matrix such that it is one if jth

point is visible from the ith camera and zero otherwise. Thus,
Visibility Matrix is of the size of all points considered after
performing RANSAC. Using the above equation, we can refine
the camera poses and 3D points simultaneously by minimizing
the reprojection error.

III. PHASE 2: DEEP LEARNING APPROACH

Neural Radiance Field is a generative model of sorts,
conditioned on a collection of images and accurate poses (e.g.
position and rotation), that allows you to generate new views
of a 3D scene shared by the images, a process often referred
to as “novel view synthesis.” In simple words, NeRF renders
a new view of an object when given some input views.

A. Input

The basic NeRF approach represents a scene using a fully-
connected (non-convolution) deep neural network, whose input
is a single continuous 5D coordinate (spatial location (x,y,z)
and viewing direction θ, ψ) and whose output is the volume
density and view-dependent emitted radiance at that spatial
location.

They synthesize views by querying 5D coordinates along
camera rays and use classic volume rendering techniques to
project the output colors and densities into an image. Because
volume rendering is naturally differentiable, the only input
required to optimize our representation is a set of images



Fig. 6. Bundle Adjustment

Fig. 7. Input and Output of NeRF

with known camera poses. They describe how to effectively
optimize neural radiance fields to render photo-realistic novel
views of scenes with complicated geometry and appearance,
and demonstrate results that outperform prior work on neural
rendering and view synthesis.

Fig. 8. NeRF Pipeline

B. Method

The following approach can be used to implement the deep
learning network for the NeRF to obtain a 3D view from the
given images.

1) NeRF Network: The NeRF model is 8 layers deep
with feature dimension of 256 for most layers. A residual
connection is placed at layer 4. After these layers, the RGB and
values are produced. The RGB values are further processed
with a linear layer, then concatenated with the view directions,
then passed through yet another linear layer before finally
being recombined with at the output.

2) Get Rays: It is clear from the input description of NeRF
that it requires rays coming from each pixel of the image.
Using pinhole model. direction of these rays with respect to
the camera frame can be calculated. Furthermore, the rotation
matrix of the camera poses converts these rays into world co-
ordinate system. And thus the rays are generated for each pose
of the object.
For accuracy, these rays need to be continuously sampled
along their length. However, since that is practically impos-
sible, feasible points along the ray lines are then consider as
samples, this is called Ray Stratification.

3) Positional Encoding: NeRF model does not do well with
high-frequency inputs, hence there is a high chance of getting
blurred or dislocated final results. Positional Encoding can help
solve this problem as it maps its continuous input to a higher-
dimensional space using high-frequency functions to aid the
model in learning high frequency variations in the data, which
leads to sharper models. It involves into the input bands of pre-
decided sin and cosine waves for the model to take as inputs.

Fig. 9. Screenshot from Rendered GIF

REFERENCES

[1] Camera Calibration and Fundamental Matrix Estimation with RANSAC
[2] Structure From Motion(SfM)
[3] https://github.com/sakshikakde
[4] https://rbe549.github.io/spring2023/proj/p2/
[5] It’s NeRF From Nothing: Build A Complete NeRF with PyTorch
[6] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.

Barron, Ravi Ramamoorthi, Ren Ng, ”NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis.”

https://www.cc.gatech.edu/classes/AY2016/cs4476_fall/results/proj3/html/sdai30/index.html
http://gsp.humboldt.edu/olm/Courses/GSP_216/lessons/SfM.html
https://rbe549.github.io/spring2023/proj/p2/
https://towardsdatascience.com/its-nerf-from-nothing-build-a-vanilla-nerf-with-pytorch-7846e4c45666

	Introduction
	Phase 1: Traditional Approach
	Data Set
	Estimate Fundamental Matrix
	Estimate Essential Matrix from Fundamental Matrix
	Estimate Camera Pose from Essential Matrix
	Linear Triangulation
	Non-Linear Triangulation
	Perspective-n-Points
	Bundle Adjustment and Visibility Matrix

	Phase 2: Deep Learning Approach
	Input
	Method
	NeRF Network
	Get Rays
	Positional Encoding


	References

