
P1 - AutoPano
Uday Sankar

usankar@wpi.edu
Using 5 Late days.

Gowri Shankar Sai Manikandan
gmanikandan@wpi.edu

Using 5 Late days.

Shaurya Parashar
sparashar@wpi.edu
Using 5 Late days.

Abstract—In this project, we intend to stitch two or more
images and create a seamless panorama. This is to be achieved
by two approaches - the first is to use classical computer vision
techniques and the second to use deep learning techniques. Based
on the approach taken, the project is split into two phases. In
phase 1, features found using corner detection will be matched,
in turn finding the Robust Homography. Then, the images can
be warped and blended together. In phase 2, a supervised and
an unsupervised networks are implemented for computing the
Robust Homography. Finally, the results obtained from phase 2
are to be compared with those obtained in phase 1.

I. PHASE 1: TRADITIONAL APPROACH

A. Introduction

The objective of this section is to implement a panorama
stitching algorithm for multiple images using classical com-
puter vision techniques. This can be achieved by using the
following steps:

1) Corner detection.
2) Adaptive Non-Maximal Suppression (ANMS).
3) Feature Descriptors.
4) Feature Matching.
5) Random Sample Concensus (RANSAC).
6) Stitching/Blending Images together.
The pipeline involved in the traditional approach is shown

in figure 1.

Fig. 1: Overview of Panorama Stitching using Traditional Approach.

B. Corner Detection

In order to get the features from the images so that they can
matched, we start with the step of corner detection. For this
project, we used two methods for this purpose - first one being
Harris corner detection method and the second one being Shi-
Tomasi corner detection method. For Harris corner detection,
we used the cornerHarris() function and for Shi-Tomasi corner
detection, we used the goodFeaturesToTrack() function. Both
of these funcitons were imported from the OpenCV library.

Fig. 2: Corner Detection for Train Set 1.

Fig. 3: Corner Detection for Train Set 2.

Fig. 4: Corner Detection for Train Set 3.

Fig. 5: Corner Detection for Test Set 1.



Fig. 6: Corner Detection for Test Set 2.

Fig. 7: Corner Detection for Test Set 3.

Fig. 8: Corner Detection for Test Set 4.

C. Adaptive Non-Maximal Suppression

From the features obtained during corner detection, the
Nbest features need to be selected for feature matching. This
is done by using a technique called Adaptive Non-Maximal
Suppression (ANMS). This step is necessary because, during
corner detection, since corners in an image are not perfectly
sharp, each corner can get multiple hits. ANMS basically
makes sure that the corners detected equally distributed across
the whole image. The pseudo-code for ANMS is shown in
figure 8. In our code, an Nbest value of 1000 was taken.

Fig. 9: Pseudo-code for Adaptive Non-Maximal Suppression

The ANMS outputs based on the given pseudo-code are
shown below.

Fig. 10: ANMS for Train Set 1.

Fig. 11: ANMS for Train Set 2.

Fig. 12: ANMS for Train Set 3.

Fig. 13: ANMS for Test Set 1.

Fig. 14: ANMS for Test Set 2.



Fig. 15: ANMS for Test Set 3.

Fig. 16: ANMS for Test Set 4.

D. Feature Description

In this step, the goal is to describe each feature vector. First,
we took a patch of size 41 x 41 around the feature point. Then
we applied Gaussian blur and down-sampled the blurred patch
to an 8 x 8 matrix. Then, we reshaped this matrix into a vector
of 64 elements. The vector was finally standardized by making
is mean 0 and variance 1. A sample patch taken for feature
description is shown in figure 17.

Fig. 17: A sample of a patch that is taken for feature description.

E. Feature Matching

Once we have the feature vectors, the features in two
different images can be matched by computing the Sum-
Square Distance (SSD) across each of these features. The ratio
of the shortest and second shortest SSD is taken and compared
with a certain comparison ratio which we took as 0.5. We also
set a condition that if the matches found in this process is less
than 30 matches, then it can be considered that there is no
overlapping region in these images and panorama cannot be
formed. An example for feature matching in action is shown
in figure 18.

Fig. 18: Feature Matching.

F. RANSAC

If we closely look at the output of feature matching, we
can see that there are a lot of incorrect matches. This will
be major problem when we want to find the homography
between these images. So, before proceeding to the next
steps, we have to remove these outliers. This can be done by
a method called Random Sample Concensus (RANSAC).
In RANSAC, initially four point pairs from the images are
selected at random. Then the homography matrix is calculated
between them using the formula in figure 19.

Fig. 19: Finding Homography.

Once the P matrix is obtained, the homography H can
simply be calculated using Singular Value Decomposition.

SV D P = USV T

The V vector in the above equation can be taken as the
homography matrix of the two images. Now, this homography
is used to estimate the random four points in image 2 with
respect to image 1. The best set of inliers are found by
repeating these steps from a number of iterations. Our code
did this for 5000 iterations. Plotting the matching like feature
matching but after RANSAC would look like figure 20.



Fig. 20: RANSAC.

G. Stitching/Blending Images

Once the homography between the two images are obtained,
they can formed into a single panorama by simply warping one
image and then stitching it over the common area of second
image. Since we were free to chose the way this can be done
with multiple images, we chose the following way to approach
this problem.

1) Find homography between image 1 and image 2.
2) Apply this homography on four corner points of image

1.
3) Calculate the minimum and maximum x and y transla-

tion of image.
4) Find the homography matrix for this translation and

multiply with initial homography.
5) Warp image 1 with this new homography and then

overlay image 2 on to image 1 forming the panorama.
6) Now this panorama becomes image 1 and next image in

the input becomes image 2 and above steps are repeated.

A sample of panorama between two images being formed
after warping and stitching is shown in figure 21.

Fig. 21: Warping and Stitching to form panorama.

H. Results

Finally, the above mentioned approach was put to action
on all the given sets of images. Given the time constraints in
being able to debug the code, the results are not the greatest.
But it is still amazing to see how powerful mathematical
concepts can be when coupled with high computational power
of present day computers. Even though, some results were not
at all useful, some other results turned out to be impressive.
For instance, aside some irregularities near the stair case, the
panorama stitch for train set 1 is almost seamless. But at the
same time our program struggles to give a proper output for
the Train Set 3. We believe this is because our implementation
finds it difficult to make correct matches of features when
common features are heavily warped. For visualization, figure
24 shows the stitches that our code could come up with.

Fig. 22: Panorama Stitch of Train Set 1.

Fig. 23: Panorama Stitch of Train Set 2.



Fig. 24: Panorama Stitches of Train Set 3.

Now the results of panorama stitching for the test sets are
shown below.

Fig. 25: Panorama Stitch of Test Set 1.

In this stitch, the checkerboard doesn’t perfectly align. This
is because in this particular case, unlike the other cases, the
images are cyclic. The first and last images have common
region of overlap as well. Since all the four images have been
taken from a close distance, it is difficult to perfectly align
them to get the expected output.

Fig. 26: Panorama Stitch of Test Set 2.

Test Set 2 might look similar to the case of Train set 3,
but the reason that we got a incomplete output is that the
fourth image does not have any usable common region with
the either of the first three images. One way to solve this would
be manually rearranging the images so as to get a series of
images with each consecutive images having common regions.
But that method is absolutely underwhelming. So we have to
figure out a way for the program to automatically sort the
images into a useful order. This can probably be done by using
the theory of graphs, which is something to work on in the
future.

Fig. 27: Panorama Stitch of Test Set 3.



Fig. 28: Panorama Stitch of Test Set 4.

Finally, in test set 4, the fourth image does not even belong
with the other three images, and in turn does not produce any
usable matches with the other images. The output in figure
28 is the last panorama that was created before the program
halted due to absence of necessary matches.

II. PHASE 2: DEEP LEARNING APPROACH

A. Data Generation

1. Random Patch was obtained from the image, while
keeping in mind that the pixels remain within the image.

2. Random perturbation in a range of [-32,32] was added
to the corners of this patch.

3. Then we warp the original image, using inverse of
homography between the corner points of patch A and patch B.
Thus, we generate the ground truth as the known homography
between the patches as well. Figure 29 shows a sample of
patch A, and it’s corresponding patch B.

Fig. 29: Data Generation

B. Supervised Learning

Fig. 30: Supervised Learning

1. Homography net model was developed for supervised
learning, and its architecture can be seen Figure 30. The
inputs for the network were the two patches generated, which



were then stacked channel wise. The homography between the
patches was used as ground truth, to compute the loss function.

2. First Iteration - The first training iteration for training the
supervised model had mini batch size as 64, stochastic gradient
descent optimizer was used, while keeping the learning rate
as 0.005. Figure 31, shows the loss curve obtained during the
training and on validation set. We found that our model was
getting overfit and was not performing well on the validation
set.

Fig. 31: Supervised Learning-Iteration 1

3. Second Iteration - We modified some parameters to
reduce the overfit that our model was getting. Figure 32 shows
the loss curve obtained during the training and on validation
set. Batch size was kept to 2, and Adam optimizer was used
with decreased learning rate of 0.001. In this iteration, our
model went from overfit in the previous case, to dropping
drastically in training loss. During testing, we found that the
model was learning near identity matrix. We think it might be
due to the decreased batch that we did to overcome overfit.
Also, learning rate could’ve decreased as well. So, due to this,
we weren’t able to test our supervised model on generating
homography, and warping images.

Fig. 32: Supervised Learning-Iteration 2

C. Unsupervised Learning

1. The unsupervised model (Fig. 33), contains the basic
homography network that we had in supervised learning. It
just takes in the patches stacked as input. Using the received
4 point homography, and corner points generated from the
patch A of each input, we convert this 4 point homography
into a 3*3 homography, and pass it through a Homography
Warper in order to obtain the loss function.

Fig. 33: Unsupervised Learning

2. The unsupervised model was trained for trained for 10
epochs, with mini-batch size as 16. Adam optimizer was taken
with learning rate as 0.005. The reason we think may have
been for improper convergence is the less number of epochs.
The training code for unsupervised model didn’t run on gpu,
which we didn’t expect. After hours of debugging too, we had
to resort on training the model on cpu, which is why there is
no convergence.The losses for the unsupervised model can be
found below (Fig. 34).

Fig. 34: Unsupervised Learning-losses


