
RBE/CS549 Computer Vision
Homework 0 Report

Yijia Wu
School of Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: ywu21@wpi.edu

I. PHASE 1

The goal of Phase 1 is to implement a simplified Pb lite
boundary detection pipeline.

A. Filter bank creation

The first step of Pb lite boundary detection is to filter the
input image with a set of filters. I chose and implemented
oriented Derivative of Gaussian (DoG) filters (Fig. 1), Leung-
Malik filters (Fig. 2), and Gabor filters here (Fig. 3).

Fig. 1: DoG filter bank

(a) LM small filter

(b) LM large filters

Fig. 2: LM filters

B. Texton Map

To generate a Texton map, the first step is to combine
all filter responses that are generated by convolving with
each filter in the filter bank separately. Each pixel is then
represented by a vector of the value of the same position in

Fig. 3: Gabor filter bank

all filter responses. After that, pixel vectors in the map with
all filter responses are clustered using the K-mean algorithm,
which outputs the Texton map. The value of each pixel in the
Texton map is the id number of the vector category that the
same pixel is corresponding to in the vector map. Ten example
raw images and Texton map of them are shown in Fig. 4 and
Fig. 5.

C. Brightness Map and Color Map

The initial maps of the Brightness map and the Color map
are the grayscale of the input image and the original color
image. The next step is the same as the clustering step when
generating the Texton map. The Brightness and Color map of
ten example images are shown in Fig. 6 and Fig. 7.

D. Texture, Brightness and Color Gradients

To obtain the gradients of the Texton, Brightness, and Color
map, which shows the boundary between different clusters,
half-disc masks are used to speed up the boundary detection.
The generated half-disc mask bank is shown in Fig. 8. By
convolving the map with a half-disc mask the mirrored version
of it, we can compute the chi-square distance of each pixel.
The sum of these distances are the Texture, Brightness, and
Color Gradients.

E. Sobel and Canny baselines

Sobel and canny filters are two common filters that can
be used for boundary detection. The sobel and canny filter
responses are shown in Fig. 12 and Fig. 13 as the baseline of
the final result.



Fig. 4: Initial image

Fig. 5: Texton Map

Fig. 6: Brightness Map

F. Pb-Lite output

The last step is the combination of the Texture, Brightness
and Color Gradients, and sobel, canny baselines. The weight
is chosen as 0.5. The final output is shown in Fig. 14

G. Discussion and Conclusion

The implemented Pb-lite output contains more boundaries
than the one that is shown in the ground truth or the sobel
and canny baseline. It is likely because of the filter parameter
and texton map cluster number difference. Though it is still

not good enough, this implementation is still better than two
baselines as most boundaries are continuous and clear.

There are many reasons why the performances are im-
proved. Compared with the sobel and canny baselines, the
pb-lite method makes use of much more information. Unlike
two filters which can only capture local information, the
brightness and color map provides a global view of the image.
The combination of multiple texture filters also helps with
capturing the gradient information from a larger scale.



Fig. 7: Color Map

Fig. 8: HD mask

II. PHASE 2

A. First neural network

The first neural network mainly contains three conv2d layers
and three linear layers as shown in Fig. 18a. The optimizer is
chosen as adam with a 0.001 learning rate. The batch size
is 128. The number of parameters is 4937. The confusion
matrices on the train data and test data are shown in Table. I
and II.

B. Improved neural network

To improve classification accuracy, the size of each layer
are doubled as shown in Fig. 18b. Data normalization, aug-
mentation (rotate random angle within [-30, 30] degree or flip
horizontally) and decaying learning rate are also added. The
number of parameter of the new model is 9833. Though the
training accuracy seems similar, the testing accuracy increases
by 3%.

C. ResNet

A 34-layer ResNet is implemented by modifying the ResNet
source code because of the time limit. The number of param-
eters is 33827.



TABLE I: Confusion matrix of the first neuron network on train data

1 2 3 4 5 6 7 8 9 10
1 4779 19 37 11 21 6 6 3 94 24
2 11 4918 0 3 0 1 5 0 11 51
3 127 10 4550 79 104 37 56 7 19 11
4 59 12 134 4159 64 292 190 18 35 37
5 33 8 155 81 4556 38 73 28 15 13
6 21 11 114 294 99 4273 109 43 16 20
7 13 15 115 45 24 16 4745 0 17 10
8 39 8 56 73 80 53 6 4658 6 21
9 68 51 8 9 4 1 7 0 4842 10

10 73 86 7 9 3 4 3 1 24 4790

TABLE II: Confusion matrix of the first neuron network on test data

1 2 3 4 5 6 7 8 9 10
1 817 20 24 20 19 5 8 6 50 31
2 18 884 4 5 4 0 6 2 21 56
3 73 6 653 61 71 48 53 15 11 9
4 35 12 84 538 51 150 79 16 9 26
5 24 5 97 60 677 29 53 40 10 5
6 23 5 53 155 35 637 42 34 5 11
7 11 11 47 37 29 15 830 4 12 4
8 24 5 39 45 82 38 0 741 6 20
9 52 41 5 7 12 3 3 2 853 22

10 50 83 6 10 0 5 5 6 19 816

TABLE III: Confusion matrix of the improved neuron network on train data

1 2 3 4 5 6 7 8 9 10
1 4986 1 5 0 1 0 1 1 4 1
2 1 4982 1 0 1 0 0 0 0 15
3 12 0 4946 7 15 8 8 3 1 0
4 1 0 11 4917 20 36 8 4 2 1
5 0 0 7 10 4965 4 7 7 0 0
6 1 0 4 59 14 4909 3 8 2 0
7 0 0 9 10 6 2 4971 0 0 2
8 0 0 1 11 5 9 0 4973 0 1
9 5 2 0 1 0 0 0 0 4991 1

10 0 7 1 1 0 1 1 1 2 4986

TABLE IV: Confusion matrix of the improved neuron network on test data

1 2 3 4 5 6 7 8 9 10
1 832 12 38 21 12 6 5 10 38 26
2 48 2 713 52 53 42 58 19 8 5
3 14 4 62 610 44 160 49 35 13 9
4 9 3 61 46 750 47 34 44 4 2
5 11 4 23 176 42 671 17 41 1 14
6 7 4 56 52 33 18 821 1 4 4
7 8 1 18 48 50 51 2 815 2 5
8 49 25 7 8 5 8 8 5 868 17
9 21 65 9 14 1 4 4 10 23 849



Fig. 9: Tg Map

Fig. 10: Bg Map

Fig. 11: Cg Map



Fig. 12: Sobel Baseline

Fig. 13: Canny Baseline

Fig. 14: PbLite

Fig. 15: First neuron network performance



Fig. 16: Improved neuron network performance

Fig. 17: ResNet performance



(a) First neuron network (b) Improved neuron network (c) ResNet34

Fig. 18: Neuron network architectures


