
Homework 0 - Alohomora
Uday Sankar

Email: usankar@wpi.edu
Using 1 late day

I. PHASE 1: SHAKE MY BOUNDARY

The objective of this section is to implement the pb-
lite boundary detection algorithm in which ’pb’ stands for
Probability of Boundary. Its called so because the process
returns the probability of each pixel of the input image being
part of an edge. In this method, in addition to gradients of
intensity values, discontinuities in texture and color of the
image is also considered for the purpose of detecting edges.
This process can be divided into four steps:

1) Generation of filter bank
2) Generation of texton, brightness and color maps
3) Generation of texton, brightness and color gradient maps
4) Boundary detection using the maps, Sobel and Canny

baselines

A. Generation of Filter Bank

In order to get the texture information from the images, a
number of different filters, collected into a filter bank is applied
on to the images. The filters applied may be of different scales
and orientations. Three main kinds of filters are used in this
phase:

1) Oriented Derivative of Gaussian (DoG) filters: This is a
collection Derivative of Gaussian filters in different ori-
entations. These DoG filters are obtained by convolving
a sobel operator on to a Gaussian kernel. Oriented DoG
filters of 2 scales and 16 orientations are shown in figure
1.

2) Leung-Malik Filters: It is a set of 48 filters of multiple
scales and multiple orientations. It contains 36 first and
second order derivatives of Gaussians at 6 orientations
and 3 scales, 8 Laplacian of Gaussian (LoG) filters, and
4 Gaussians. For this experiment, 2 Leung-Malik filter
banks, namely, LM small and LM large was generated.
The LM small and LM large filter banks that I generated
for this experiment is shown in figures 2 and 3 respec-
tively.

3) Gabor filters: These filters are designed based on the
operation of human eye. It is basically a gaussian kernel
modulated by a sinusoidal wave. The Gabor filter bank
that I generated dor this experiment is shown in figure 4.

Fig. 1: Oriented Derivative of Gaussian Filter Bank.

Fig. 2: Small Leung-Malik Filter Bank.

Fig. 3: Large Leung-Malik Filter Bank.

Fig. 4: Gabor Filter Bank.

B. Texton, Brightness and Color Maps

Once the filter banks are generated, each filter in the filters
banks generated in the previous step needs to be applied on to
the input images. This will result in a vector of filter responses



centered around each pixel in the image. This vector of filter
responses is basically the encoding of of texture properties
of the image. If the filter banks contain N filters in total, the
output will be an N-dimensional vector corresponding to each
pixel.

The next step is to replace each of these N-dimensional
vectors with a discrete texton ID. This is done by clustering
the filter responses for each pixel into K textons by means of
KMeans clustering. The each pixel in the image is replaced
by the discrete texton ID obtained through KMeans clustering
to obtain the Texton map (T ). So, the output will be a singe
channel image with values in the range of [1,2,...,K]. For this
experiment, a value of 64 was selected for K.

The brightness and color maps can be generated in similar
fashion. To obtain the Brightness map (B), we have to cluster
the brightness or intensity values. This is done by performing
KMeans clustering on the grayscale equivalent of the color
image. Similary, when KMeans clustering is performed on
the default three channel color image, the Color map (C) is
obtained. A K value of 16 was chosen for both brightness map
and color map in this experiment.

The texton maps (T ), the brightness maps (B), and the Color
maps (C) for each input image under study is shown in the
figures 5 through 14. Different color maps were used in the
showing of the maps for proper visualization.

Fig. 5: T , B, and C for image 1.

Fig. 6: T , B, and C for image 2.

Fig. 7: T , B, and C for image 3.

Fig. 8: T , B, and C for image 4.

Fig. 9: T , B, and C for image 5.

Fig. 10: T , B, and C for image 6.

Fig. 11: T , B, and C for image 7.

Fig. 12: T , B, and C for image 8.

Fig. 13: T , B, and C for image 9.

Fig. 14: T , B, and C for image 10.

C. Texton, Brightness and Color Gradient Maps

The reason why we generated the texton, brightness and
color maps of the input images was to find the gradients of
these maps in order to understand the pixel neighbourhoods
where change in texture, intensity and color properties was
happening. To find the gradients of the images, we use the half-
disc masks shown in figure 15. The half-disc masks are pairs
of binary images of half-discs. The purpose of the masks is to
calculate the χ2 distances using a simple filtering operation.
This completely simplifies the process where χ2 distances are
calculated by aggregating counts for histogram by looping over
entire pixel neighbourhoods. For this experiment, I generated
a half-disc mask pairs of 8 orientations and 3 scales.



Fig. 15: Half-disc Masks.

The texton, brightness and color maps are filtered using the
masks. Then, the χ2 distances between two histograms g and
h can be obtained by using the equation shown below:

χ2 = 1
2

∑K
i=1

(gi−hi)
2

(gi+hi)

where K indexes through the bins. Using this method, the
texton gradient map (Tg), the brightness gradient map (Bg),
and the color gradient map (Cg) can be obtained. The Tg , Bg

and Cg for the given input images that I obtained during the
experiment are shown in the figures 16 through 25.

Fig. 16: Tg , Bg , and Cg for image 1.

Fig. 17: Tg , Bg , and Cg for image 2.

Fig. 18: Tg , Bg , and Cg for image 3.

Fig. 19: Tg , Bg , and Cg for image 4.

Fig. 20: Tg , Bg , and Cg for image 5.

Fig. 21: Tg , Bg , and Cg for image 6.

Fig. 22: Tg , Bg , and Cg for image 7.

Fig. 23: Tg , Bg , and Cg for image 8.

Fig. 24: Tg , Bg , and Cg for image 9.

Fig. 25: Tg , Bg , and Cg for image 10.

D. Boundary Detection

Now that we have all the gradient maps of the input images,
we can proceed to generating the pb-lite output. But before
doing there is a one last step. That is to read all the Sobel
and Canny baselines of these images that were provided with
the input data. Once these baselines are obtained, they can be
used to generate the pb-lite output with the given equation:

PbEdges =
Tg+Bg+Cg

3 ⊙ (w1 ∗ cannyPb+ w2 ∗ sobelPb)

For this experiment I have chosen the value of 0.5 for both
w1 and w2. The pb-lite outputs that I obtained during my



experiment is show in figures 26 through 35, along with their
corresponding Sobel and Canny baselines for comparison.

Fig. 26: Sobel, Canny, and pb-lite output of image 1.

Fig. 27: Sobel, Canny, and pb-lite output of image 2.

Fig. 28: Sobel, Canny, and pb-lite output of image 3.

Fig. 29: Sobel, Canny, and pb-lite output of image 4.

Fig. 30: Sobel, Canny, and pb-lite output of image 5.

Fig. 31: Sobel, Canny, and pb-lite output of image 6.

Fig. 32: Sobel, Canny, and pb-lite output of image 7.

Fig. 33: Sobel, Canny, and pb-lite output of image 8.

Fig. 34: Sobel, Canny, and pb-lite output of image 9.

Fig. 35: Sobel, Canny, and pb-lite output of image 10.

E. Analysis

Upon comparing the pb-lite results with the Sobel and
Canny baselines, pb-lite has managed to remove a lot of false
positives in Canny baseline but also include a lot of neglected
information in Sobel baseline. Also, the fact that the user has
more freedom in pb-lite, in terms of choosing the filter banks
of different scales and orientations, the boundary detection
output can be fine tuned to satisfy the requirements of any user.
Thus, it can be stated that pb-lite boundary detection method
is better than both Sobel and Canny boundary detection
algorithms.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this phase, I aim to implement a number of neural net-
work architecture in order to perform classification operation
on the CIFAR-10 dataset which contains 50,000 training and
10,000 testing images of size 32x32 belonging to 10 classes.
I trained a total of five models in the experiment, which are
shown below:

1) My Basic Neural Network
2) My Improved Neural Network
3) Resnet
4) ResNeXt
5) DenseNet

Now lets take a closer look at all these networks and their
performance.

A. My Basic Neural Network

For this section, I implemented a basic classification neural
network with two convolutional layers each followed by a
ReLU activation function. The outputs of these ReLU acti-
vation functions are passed through maxpool layers. Finally,
the output of the second maxpool layer is flattened and then
passed through a set of fully connected layers which then
through argmax gives the predicted class. I decided to give
this network the name BasicNet. The architecture of BasicNet
is shown in figure 36.



Fig. 36: Architecture of BasicNet.

For this experiment, I selected a batch size of 32 and the
optimizer selected was Adam with a learning rate of 1e-3. I
also selected Cross Entropy loss for training the network. Upon
training the model for 15 epochs, these results were obtained
are shown in figures 37 through 40.

Fig. 37: Confusion of trained model on training data for BasicNet.

Fig. 38: Confusion of trained model on testing data for BasicNet.

Fig. 39: Train and Test accuracy over epochs for BasicNet.

Fig. 40: Train and Test loss over epochs for BasicNet.

In the loss and accuracy per epoch plots, the red line
represents the training and green line represents the testing.
Also, the number of parameters in the model was found to



be 430102. Alongside these, the confusion matrix for both
training data and testing data of the trained model is also
provided for the better visualization of the performance of
the model. Overall, an accuracy of 68.42% was obtained for
the testing data.

B. My Improved Neural Network

For this section, I tried to improve the BasicNet. From
the given instructions, I chose to use a number of Batch
Normalization layers between the convolutional layers. Also,
I increased the number of convolutional layers from the
BasicNet. For convenience, I decided to call this network
BatchNormNet. Apart from the batch normalization layers
and the extra convolutional layers, this network similar to the
BasicNet. The architecture of this network is shown in figure
41.

Fig. 41: Architecture of BatchNormNet.

For this experiment, I selected a batch size of 32 and the
optimizer selected was Adam with a learning rate of 1e-3.
I also selected Cross Entropy loss for training the network.

Upon training the model for 15 epochs, the results obtained
are shown in figures 42 through 45.

Fig. 42: Confusion of trained model on training
data for BatchNormNet.

Fig. 43: Confusion of trained model on testing
data for BatchNormNet.

Fig. 44: Train and Test accuracy over epochs for
BatchNormNet.



Fig. 45: Train and Test loss over epochs for
BatchNormNet.

In the loss and accuracy per epoch plots, the red line
represents the training and green line represents the testing.
Also, the number of parameters in the model was found to
be 402556. Alongside these, the confusion matrix for both
training data and testing data of the trained model is also
provided for the better visualization of the performance of
the model. Overall, an accuracy of 73.19% was obtained for
the testing data.

C. ResNet

For this section, I tried to implement a Residual Network
(ResNet). My implementation of the ResNet has four layers
containing ResNet blocks. The architecture of the whole
network is shown in figure 46 and the structure of a sample
ResNet block from the network is shown in figure 47. ResNet
blocks passes the down sampled input to the output of the
block so that it can remove the issue of vanishing gradient. Its
capabilities are visible when the model is necessarily deep.

Fig. 46: Architecture of ResNet.

Fig. 47: The ResNet Block.

For this experiment, I selected a batch size of 32 and the
optimizer selected was Adam with a learning rate of 1e-3.
I also selected Cross Entropy loss for training the network.
Upon training the model for 15 epochs, the results obtained
are shown in figures 42 through 45.

Fig. 48: Confusion of trained model on training
data for ResNet.

Fig. 49: Confusion of trained model on testing
data for ResNet.



Fig. 50: Train and Test accuracy over epochs for ResNet.

Fig. 51: Train and Test loss over epoch for ResNet.

In the loss and accuracy per epoch plots, the red line
represents the training and green line represents the testing.
Also, the number of parameters in the model was found to
be 5350422. Alongside these, the confusion matrix for both
training data and testing data of the trained model is also
provided for the better visualization of the performance of
the model. Overall, an accuracy of 79.17% was obtained for
the testing data.

D. ResNeXt

For this section, I tried to implement a ResNeXt deep
learning network. My implementation of the ResNeXt has
four layers containing ResNeXt blocks. The architecture of
the whole network is shown in figure 52 and the structure
of a sample ResNeXt block from the network is shown in
figure 53. In ResNext, a new dimension called cardinality is
implemented in order to handle model complexity efficiently.
In my network, a cardinality of 32 was selected.

Fig. 52: Architecture of ResNeXt.

Fig. 53: The ResNeXt Block.

The tensorboard graph has not done a great job visualizing



the cardinality feature of ResNeXt. The cardinality feature can
be properly seen in figure 54.

Fig. 54: The cardinality feature of ResNeXt.

For this experiment, I selected a batch size of 32 and the
optimizer selected was Adam with a learning rate of 1e-3.
I also selected Cross Entropy loss for training the network.
Upon training the model for 15 epochs, the results obtained
are shown in figures 55 through 58.

Fig. 55: Confusion of trained model on training data
for ResNeXt.

Fig. 56: Confusion of trained model on testing data for
ResNeXt.

Fig. 57: Train and Test accuracy over epochs for ResNeXt.

Fig. 58: Train and Test loss over epoch for ResNeXt.

In the loss and accuracy per epoch plots, the red line
represents the training and green line represents the testing.
Also, the number of parameters in the model was found to
be 616438. Alongside these, the confusion matrix for both
training data and testing data of the trained model is also
provided for the better visualization of the performance of
the model. Overall, an accuracy of 72.01% was obtained for
the testing data.

E. DenseNet

In this section, I will be implementing a DenseNet deep
learning model. By far, this is the most complex network with
different DenseNet Bottleneck Blocks connected by DenseNet
transition layers. The whole DenseNet architecture is shown
in figure 59 and the basic DenseNet block is shown in figure
60. Also, the transition layer used to connect DenseNet layers
is shown in figure 61.



Fig. 59: Architecture of DenseNet.

Fig. 60: The DenseNet Block.

Fig. 61: The DenseNet Transition Layer.

For this experiment, I selected a batch size of 32 and the
optimizer selected was Adam with a learning rate of 1e-3.
I also selected Cross Entropy loss for training the network.
Upon training the model, the results obtained are shown in

figures 62 through 65.

Fig. 62: Confusion of trained model on training data for DenseNet.

Fig. 63: Confusion of trained model on testing data for DenseNet.

Fig. 64: Train and Test accuracy over epochs for DenseNet.



Fig. 65: Train and Test loss over epoch for DenseNet.

In the loss and accuracy per epoch plots, the red line
represents the training and green line represents the testing.
Also, the number of parameters in the model was found to
be 1782394. Alongside these, the confusion matrix for both
training data and testing data of the trained model is also
provided for the better visualization of the performance of
the model. Overall, an accuracy of 82.24% was obtained for
the testing data.

F. Comparison

The table below is a summarization of performance of all
the models. The inference time of each model is also included
in this comparative analysis. This calculated by using the
get model complexity info function from the ’ptflops’ library
which returns the Mac value corresponding to the input model.
This value is an indicator of the complexity of the model and is
roughly equal to twice the FLOPS involved. This value when
divided by the TFLOPS of the GPU used for training will give
the inference time.

TABLE I: The comparison of all the models.

It is clearly visible from the table that the BasicNet initially
gave a lesser testing accuracy of 68.42% and the accuracy
improved to 73.19% when batch normalization layers were
included (BatchNormNet). ResNet and Densenet gave much
higher accuracies as expected. But the performance of my im-
plementation of ResNeXt is not as great as that of ResNet and
DenseNet even though it gave an higher accuracy compared
to the BasicNet. This accuracy can be improved by choosing
different hyperparameters apt for this specific task.


