
RBE 549: Homework 0
Alohomora
Deepak Harshal Nagle

Robotics Engineering
Worcester Polytechnic Institute
Worcester, Massachusetts 01609

Email: dnagle@wpi.edu
Telephone: (774) 519-8335

Using one late day

Abstract—The goal of this project is to improve upon tradi-
tional boundary detection techniques in computer vision through
the implementation of a new algorithm, the probability of
boundary (pb) method. In addition, this project also explores
the use of deep learning for image classification on the CIFAR-
10 dataset, comparing the performance of various neural network
architectures. Phase 1 focuses on the development and evaluation
of the pb algorithm, while Phase 2 delves into the application of
deep learning techniques to improve classification accuracy.

INTRODUCTION

In the field of computer vision, boundary detection and
image classification are crucial tasks that require a range of
techniques to be effectively solved. This project aims to delve
into these two areas by first focusing on the implementation of
a new boundary detection algorithm, the probability of bound-
ary (pb) method. This algorithm utilizes texture, brightness,
and color information to improve upon traditional techniques
such as Canny and Sobel. The second phase of this project
explores the application of deep learning to improve image
classification accuracy on the CIFAR-10 dataset, comparing
the performance of various neural network architectures like
ResNet, ResNet, DenseNet. The goal of this project is to gain
a deeper understanding of these important computer vision
problems and the techniques used to solve them. I wish you
the best of success.

PHASE 1: SHAKE MY BOUNDARY

Edge detection is a fundamental problem in the field of
computer vision, and the goal of this section is to explore a
new method for boundary detection called the Probability of
Boundary (Pb) algorithm. This algorithm takes into account
not only intensity changes, but also texture, brightness, and
color information to improve upon traditional techniques such
as Canny Edge and Sobel Descriptors. In this section, we
will describe the process of implementing a simplified version
of the Pb algorithm, called Pb-Lite, and analyze the results
obtained. The steps involved include generating filter banks,
developing texture, brightness, and color maps, computing
gradients, and combining the results with weighted Canny and
Sobel baselines. The Pb-Lite algorithm will be tested on the
Berkeley Segmentation Dataset 500.

I. FILTER BANKS

In order to detect textures in an image, a collection of filters
known as filter banks are used. These filter banks are a set
of various filters that are applied to the image at different
scales and orientations to extract the low-level features of
the image. In this project, we have used three filter banks:
Oriented Derivative of Gaussian (DoG) filter bank, the Leung-
Malik filter bank, and the Gabor Filters. These filter banks are
applied to the input image and their output is used to measure
and aggregate regional texture and brightness distributions,
providing an enhanced understanding of the image’s features.
These filter banks are illustrated in figures 1, 2, and 3.

A. Oriented Derivative of Gaussian (DoG) Filters:

These are generated by convolving a Sobel filter with
a Gaussian kernel at various scales and orientations. They
represent the derivative of basic Gaussian kernels at various
angles.

Fig. 1. DoG filters at scales 1.0 and 0.75, and 16 orientations each

B. Leung-Malik Filters:

The LM filter bank is a set of 48 filters of different scales
and orientations that are designed to capture various features
in an image. It includes eighteen first and eighteen second
order derivatives (for our model, at scales =

√
2, 2, 2

√
2 at

six orientations each) of Gaussian filters, eight Laplacian of
Gaussian filters (for our model, at scales =

√
2, 2, 2

√
2, 4,3

√
2,

6, 6
√
2, 12) and four ordinary Gaussian kernels (for our model,√

2, 2, 2
√
2, 4). These filters are arranged in a specific way to

effectively extract features at different scales and orientations.
The filter bank is shown in the figure 2.

Fig. 2. LM filter bank

C. Gabor Filters:

Gabor filters are a powerful tool in image processing that
are inspired by the way the human visual system processes
information. They are created by combining a Gaussian kernel
with a sinusoidal plane wave, which allows them to analyze
specific frequency content in images in certain directions and
localized regions. In this report, the Gabor filter bank used
consists of multiple scales (scale = 5, 7, 9, 11, 13), at multiple
sinusoidal wavelengths (lambda = 5, 8, 11, 14, 17), at 8
different orientations. These are illustrated in the figure 3,
which shows the filter bank used in the project.

Fig. 3. Gabor filter bank

II. TEXTON, BRIGHTNESS AND COLOR MAPS:

Texture map is generated by first convolving all the 120
filters with the input grayscale image to get a stack of 120
output kernels. Thus, each point on the original image now
has 120 different values (cluster centers) assigned to it. Using
KMeans clustering, we generate the Texture map where each
pixel is now represented by a Texton ID (out of 0 to 63, both
inclusive) assigned to it. Similar to this, we perform Color

gradient based on the colored 3-layer (RGB) input to group
together the similarities in colors of the image. For this color
map, we perform the KMeans clustering to obtain 16 different
cluster values. Finally, we perform KMeans clustering on the
grayscale image to obtain the brightness map with 16 clusters.

Fig. 4. Texton, Brightness and Color Maps for Image 1

Fig. 5. Texton, Brightness and Color Maps for Image 2

Fig. 6. Texton, Brightness and Color Maps for Image 3

Fig. 7. Texton, Brightness and Color Maps for Image 4

Fig. 8. Texton, Brightness and Color Maps for Image 5

Fig. 9. Texton, Brightness and Color Maps for Image 6

Fig. 10. Texton, Brightness and Color Maps for Image 7

Fig. 11. Texton, Brightness and Color Maps for Image 8

Fig. 12. Texton, Brightness and Color Maps for Image 9

Fig. 13. Texton, Brightness and Color Maps for Image 10

III. TEXTURE, BRIGHTNESS AND COLOR GRADIENTS:

The Texture, Brightness and Color gradients (Tg, Bg, Cg)
are computed to understand how much the distributions of
Texture, Brightness and Color maps are changing at each
pixel. These gradients are evaluated by convolving the half-
disk masks of various orientations and scales with the maps
generated earlier. The half-disk masks makes it possible to
easily evaluate the gradient maps at different scales and
angles, which enables us to capture the variations of texture,
brightness and color at different orientations and scales. These
help us calculate the chi-square distance between the filtered
left and right parts around the image pixel. The chi-square
distance is utilized for comparing histograms. It helps to
measure how similar or different the filtered left and right
parts of each image pixel are.

Fig. 14. Chi-square distance formula

The gradient maps provide a deeper level of analysis of the
image by highlighting variations in texture, brightness, and
color at each pixel. The Figures show Tg, Bg, and Cg gradients
for test images.

Fig. 15. Texture, Brightness and Color Gradients for Image 1

Fig. 16. Texture, Brightness and Color Gradients for Image 2

Fig. 17. Texture, Brightness and Color Gradients for Image 3

Fig. 18. Texture, Brightness and Color Gradients for Image 4

Fig. 19. Texture, Brightness and Color Gradients for Image 5

Fig. 20. Texture, Brightness and Color Gradients for Image 6

Fig. 21. Texture, Brightness and Color Gradients for Image 7

Fig. 22. Texture, Brightness and Color Gradients for Image 8

Fig. 23. Texture, Brightness and Color Gradients for Image 9

Fig. 24. Texture, Brightness and Color Gradients for Image 10

A. Pbline output:

The final pbline output is obtained by taking average of
the Tg, Bg, and Cg gradients. Similarly, we perform weighted
average between Sobel and Canny baselines and the resulting
map is multiplied element-vise with the previous average map
of Tg, Bg, and Cg gradients. This results in a map where
the Texton, brightness, Color features as well as the features
present in canny and sobel baselines.

Fig. 25. pbline calculation

Fig. 26. Texture, Brightness and Color Gradients for Image 1

Fig. 27. Texture, Brightness and Color Gradients for Image 2

Fig. 28. Texture, Brightness and Color Gradients for Image 3

Fig. 29. Texture, Brightness and Color Gradients for Image 4

Fig. 30. Texture, Brightness and Color Gradients for Image 5

Fig. 31. Texture, Brightness and Color Gradients for Image 6

Fig. 32. Texture, Brightness and Color Gradients for Image 7

Fig. 33. Texture, Brightness and Color Gradients for Image 8

Fig. 34. Texture, Brightness and Color Gradients for Image 9

Fig. 35. Texture, Brightness and Color Gradients for Image 10

IV. PHASE 2: DEEP DIVE ON DEEP LEARNING

Phase two involves implementing different deep-learning
algorithms to classify the CIFAR-10 dataset and evaluating
them based on the training and testing loss, accuracies, number
of parameters, and confusion matrix. The CIFAR dataset
contains 60000 images (50000 training images and 10000
testing images). These are 32x32 colored pixel images. Due to
practical constraints on training speed, we will use one-tenth
of the data for training purposes.

A. Convolutional Neural Network:

For quantitative analysis of different architectures, we first
implement a simple 5-layered network with convolution layers
and ReLU activations at each layer. Initially, the model did
not converge at all. Finally, taking Adam as an optimizer
(instead of SGD) and a large minibatch size (n = 100) ensured
that the model converged as it is seen from the plots. Our
estimate is that the model would converge even further with
improved accuracy if it were implemented for a higher number
of epochs.

Fig. 36. Convolutional Neural Network: Loss on Train data

Fig. 37. Convolutional Neural Network: Accuracy on Train data

Fig. 38. Convolutional Neural Network: Loss on Test data

Fig. 39. Convolutional Neural Network: Accuracy on Test data

Fig. 40. Convolutional Neural Network: Data and Parameters

Fig. 41. Convolutional Neural Network: Test Data Confusion Matrix

Fig. 42. Convolutional Neural Network: Architecture

B. Improved Neural Network:

The architecture of the previous neural network was im-
proved by first implementing batch normalization at each of
the layers. Also, ReLU was replaced by LeakyReLU of differ-
ent slopes as well as with other kinds of activation functions
like Softplus and Tanh. The minibatch size is reduced to 50.
The learning rate was reduced by a factor of 10. As expected,
the model performance was slightly better than the previous
neural network architecture on the train set, even after having
a smaller batch size. Our expectation is that this performance
could improve even more if we use skipped connections which
we will see in the next section.

Fig. 43. Improved Neural Network: Loss on Train data

Fig. 44. Improved Neural Network: Accuracy on Train data

Fig. 45. Improved Neural Network: Loss on Test data

Fig. 46. Improved Neural Network: Accuracy on Test data

Fig. 47. Improved Neural Network: Data and Parameters

Fig. 48. Improved Neural Network: Test Data Confusion Matrix

Fig. 49. Improved Neural Network: Architecture

C. ResNet:

The architecture consisted 11-layered equivalent of ResNet.
It involved different blocks of convolution layers. As the
architecture becomes deep, there is a high tendency for van-
ishing gradients. This results in the saturation of the model
with very small gradients and unchanging weights. To avoid
this, skipped connections are implemented which retain the
relevant information and avoid vanishing gradients. In this
model, we used two skipped connections, one between the
outputs of the second and third blocks and the other between
the fourth and fifth blocks. The plots indicate a clear decrease
in the loss for both train and test sets. While the loss did not
reach the minimum value, looking at the trend, we estimate
that increasing the number of epochs will result in the loss
decreasing even further, as deeper networks need more epochs
to train. Also, due to the GPU constraints, the batch size
used was just 20, still, it managed to canverge and had a
performance similar to the previous network.

Fig. 50. ResNet: Loss on Train data

Fig. 51. ResNet: Accuracy on Train data

Fig. 52. ResNet: Loss on Test data

Fig. 53. ResNet: Accuracy on Test data

Fig. 54. ResNet: Data and Parameters

Fig. 55. ResNet: Test Data Confusion Matrix

Fig. 56. ResNet: Architecture

D. ResNext:

ResNext is a modification to ResNet. It is observed from the
ResNext Paper[***] that in deeper networks, the performance

improves significantly if instead of making the network deeper,
we make it wider. First, the layers are arranged into different
blocks. Input to each block is separately (”k” times) passed
through the same set of layers, and thus, ”k” different outputs
are obtained. This ”k” is the cardinality of the network blocks
All these outputs are added together before putting them into
the next block. I implemented five blocks each containing
six layers, i.e. 30-layered network, with k=8. This 30-layered
structure with cardinality ”8” needs a higher batch size, but
due to limits on GPU, I could only use a batch size of 25.
Further, such big models should be trained for a much higher
number of epochs. However, due to the slow training speed,
I could only train it for 10 epochs, though it still managed to
converge.

Fig. 57. ResNext: Loss on Train data

Fig. 58. ResNext: Accuracy on Train data

Fig. 59. ResNext: Loss on Test data

Fig. 60. ResNext: Accuracy on Test data

Fig. 61. ResNet: Data and Parameters

Fig. 62. ResNext: Test Data Confusion Matrix

V. CONCLUSION AND DISCUSSION

Fig. 63. Comparison Table

We have implemented various neural network models and
analyized their performance. All these models are based on
different deep learning techniques and have different depths.
Although due to limitations the comparison is not perfect, still
few things can be concluded from it. For one, the comparison
between basic CNN and improved CNN tells us that, though
initial accuracy is much higher for improved CNN, the basic
CNN reaches the similar value after a few epochs. It is true
from the comparison table that, larger, deeper models (ResNet
and RangeNet) have longer inference time, even if they are
implemented with much less number of parameters. Also,
based on the test accuracies we can conclude that, in general,
the bigger models perform poorly in the beginning of the
training while they may outperform smaller models in the long
run. These models (ResNet and RangeNet) expect more data
for training. RangeNet in particular, would perform better if
the cardinality (’k’) and the number of epochs are increased.
Finally, adding too many layers deep into the newtwork
results in negligible gradient values. To avoid these, skipped-
connections are useful.

REFERENCES

[1]
1 Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun. Deep Residual

Learning for Image Recognition (2015)
2 Pablo Ruiz. ResNet for CIFAR-10 (2018)
3 Lei Sun. ResNet on Tiny ImageNet (2017)

