
RBE/CS 549 Computer Vision
HW0 - Alohomora

Noopur Koshta
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, USA

nkoshta@wpi.edu
Using 1 late day

Abstract—The assignment consists of two parts: A)”Shake my
Boundary” where we use a probability based edge detection by
calculating Texture, Brightness and Color Map and gradients
along with Sobel and Canny Baselines B) ”Deep Dive on Deep
Learning ” where we compare multiple deep learning architec-
tures to classify objects from CIFAR10 BSDS500 dataset.

Index Terms—Edge Detection, Sobel, Canny, CIFAR10,
BSDS500, ResNet, DenseNet, ResNeXt

I. PHASE 1 : SHAKE MY BOUNDARY

The objective of the first phase is to implement the PbLite
edge detection algorithm. ’Pb’ stands for probability of bound-
ary and accordingly gives the probability of each pixel of
an input image, belonging to a true edge in the image. The
algorithm is implemented in 4 steps: A) Filtering the input
image to get textures B) Quantizing the per pixel texture,
brightness and color attributes C) Finding the gradients of
texture, brightness and color for each pixel D) Combining the
result with the baseline Canny or Sobel edge detection results

In this assignment, we use a probability based edge de-
tection which consists of three different parameters:texture,
brightness as well as color variations to detect boundaries
along with three different filters: Oriented Derivative of Gaus-
sian, Leung-Malik (LM), Gabor Filter-banks.

A. Oriented Derivative of Gaussian Filter Bank

As the name suggests, this filter bank has the first order
derivative of the 2D gaussian function. The first order deriva-
tive is computed by convolving the gaussian kernel with the
Sobel filter We obtain the Oriented DOG Filter, Convolution
of a Sobel filter over a Gaussian kernel, rotating the kernel
with 2 different scales and 16 orientations.

Equation of a Gaussian operator :

g(x, y) =
1

2πσ2
e−(x2+y2)/(2σ2)

B. Leung-Malik (LM) Filter Bank

This filter bank consists of 4 different types of filters -
the gaussian filter, first order derivative of gaussian, second
order derivative of gaussian and the laplacian of gaussian. The
derivative of gaussian filters have different standard deviation
along the X and Y axes giving the filter an elongated shape.
Further, these elongated filters are rotated to have 8 different

Fig. 1. Oriented DOG Filter-bank

orientations. A fixed set of 4 standard deviation values was
used to create the filters and depending on those fixed set of
values, 2 LM filter banks were implemented - LM Small and
LM Large. Derivative of gaussian filters were created only for
the first 3 scale values of the set. Gaussian and laplacian of
gaussian were created for all the 4 scale values.

Leung-malik filter-banks are formed by multi-scale, multi-
orientation filter-bank consisting 48 different filters. There are
three different types of Leung-malik filters. In first type of
filters, first and second derivative filters occur at the first 3
scales with an elongation factor of 3, i.e. sigmax = sigma
sigmay = 3 ∗ sigmax. In second type of filter, Leung-malik
small filters occurs at basic scales, sigma =1,

√
2, 2, 2

√
2. In

third type of filter, Leung-malik large filters occurs at basic
scales, sigma =

√
2, 2, 2

√
2, 4.

Leung-Malik filters are obtained by combining 4 different
combinations of filters: 1) First Derivative of Gaussian Filter 2)
Second Derivative of Gaussian Filter 3) Laplacian of Gaussian
Filter 4) Gaussian Filter

C. Gabor Filter Bank

The gabor filter has a gaussian kernel modulated with a
sinusoidal plane kernel. The bank consists of gabor filters hav-
ing different standard deviation for the gaussian and different
frequency for the sinusoids, which are further rotated to get
different orientations. Gabor filters with 3 different standard
deviation values and 2 different sinusoid frequencies were
implemented.

Gabor filters mostly occur in the human visual system.
Gaussian kernel function modulated by a sinusoidal plane
wave. It analyses whether there is any specific frequency
change.

Fig. 2. Leung-Malik Small Filter-bank

Fig. 3. Leung-Malik Large Filter-bank

D. Texton Map, Brightness Map, Color Map

1) Texton Map: We find Texton Map by capturing the
texture changes in the image and cluster the texture variations
with an N-dimensional vector for clustering all the responses
at all pixels in the image for K textons using Kmeans.

The texton map or the texture map encodes the information
of a certain pixel being a part of a texture in the image. This
is done by convolving the image with the individual filters

Fig. 4. Leung-Malik Filter-bank

Fig. 5. Image 1 (a) Texton Map (b)Brightness Map (c) Color Map

Fig. 6. Image 2 (a) Texton Map (b) Brightness Map (c) Color Map

in the filter banks generated in I-A. The brightness and color
maps accordingly encode the intensity and color values for
each pixel. These maps are then processed with dimensionality
reduction operation to get a lower dimension space for the
maps. This is done using the kmeans clustering algorithm. For
the texture map, convolution was performed for all the 3 image
channels - R,G,B. The color maps were also generated for all
the 3 image channels. In the resulting texton and color maps,
the 3 chanels were merged to create an RGB image. Figures
5 and 6 show the corresponding maps where the Derivative of
Gaussian filter bank was used.

2) Brightness Map: We find Brightness Map by capturing
the brightness change in the image and cluster the bright-
ness values for gray-scale equivalent of a color image using
Kmeans clustering by choosing a set of cluster bins.

The next step is to find the gradients of the texture, bright-
ness and color at each pixel. This step is executed efficiently
using half disk masks of varying sizes and orientations. Half
disk masks are a set of pairs of masks having a semicircular
disk centred at the centre of the mask, refer Figure 7. By
applying pairs of half disk masks at each pixel of the maps
generated in I-B via convolution, and computing the difference
between the results of left mask and right mask application,
we get a measure of the gradient of the attribute at the pixel.

3) Color Map: We find Color Map by capturing color
changes or chrominance content in the image and cluster the
color values (3 values per pixel (RGB color channels)) using
Kmeans clustering by choosing a set of cluster bins.

E. Half Disc Masks

Half Disc Masks refer to pairs of binary images of Half-
Discs using equation of circles constraining either x and y or
both within a particular range and variation of angles.

Fig. 7. Image 3 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 8. Image 4 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 9. Image 5 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 10. Image 6 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 11. Image 7 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 12. Image 8 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 13. Image 9 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 14. Image 10 (a) Texton Map (b) Brightness Map (c) Color Map

Fig. 15. Image 1 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 16. Image 2 (a) Texton Gradient (b)Brightness Gradient (c) Color
Gradient

Fig. 17. Image 3 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 18. Image 4 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 19. Image 5 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 20. Image 6 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 21. Image 7 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 22. Image 8 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 23. Image 9 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 24. Image 10 (a) Texton Gradient (b) Brightness Gradient (c) Color
Gradient

Fig. 25. Image 1 (a) Canny (b) Sobel (c) Pblite

Fig. 26. Image 2 (a) Canny (b) Sobel (c) Pblite

Fig. 27. Image 3 (a) Canny (b) Sobel (c) Pblite

Fig. 28. Image 4 (a) Canny (b) Sobel (c) Pblite

Fig. 29. Image 5 (a) Canny (b) Sobel (c) Pblite

Fig. 30. Image 6 (a) Canny (b) Sobel (c) Pblite

Fig. 31. Image 7 (a) Canny (b) Sobel (c) Pblite

Fig. 32. Image 8 (a) Canny (b) Sobel (c) Pblite

Fig. 33. Image 9 (a) Canny (b) Sobel (c) Pblite

Fig. 34. Image 10 (a) Canny (b) Sobel (c) Pblite

F. Chi Square Distance

Chi-square distance is a statistical method to measure sim-
ilarity between 2 feature matrices (h, g) and used in many
applications like similar image retrieval, image texture, feature
extractions. It has the property of distributional equivalence,
meaning that it ensures that the distances between rows and
columns are invariant. We use chi-sqaure distance to find the
various gradient values by comparing each map with particular
bins against half disk filter bank.

χ2(g, h) =
1

2

K∑
i=1

(gi − hi)
2

gi + hi

G. K-means Clustering

K-means algorithm clusters data by trying to separate sam-
ples in group of equal variance by minimizing inertia or within
cluster sum of squares.

Kmeans algorithm divides a set of N samples X into K
disjoint clusters C, each described by mean ui of samples in
the cluster.

We first start with initialising the number of clusters and
randomly initialise the centroid within the clusters and com-
pute new centroids of each cluster by assigning each point to
its closest centroid until the centroid positions remain constant
and unaffected by further iterations.

H. Gradient Maps

The Maps generated above are used to calculate gradient
maps for texture, brightness and color. These maps encode
the texture, brightness and color distributions changing at each
pixel. These are generated by comparing the values at each
pixel by convolving the image with a left/right half-disc pair
centered at the pixel. The basic concept behind this is that
if the values are similar the gradient should be small and if
the values are dissimilar, the gradient will be large. The half-
disks are generated by multiplying an array of size equal to
the radius/scale of the circular disk with all values which lie
inside this radius equal to 1 and rest 0, with an array of equal
size but where one half of the array is 0s and the other half
consists of 1s. This multiplication results in a half-disk which
can be rotated to produce the desired half-disk mask. Here
if you rotate the disk after you’ve multiplied the two arrays
will result in pixel voids. This can be avoided by rotating the
rectangular block matrix of 0s and 1s and then by applying a
”logical OR” operator on them.

II. PHASE 2 : DEEP DIVE INTO DEEP LEARNING

A. Convolutional Neural Network

This is an initial deep learning model. It is a simple
neural network with 4 convolution layers followed by 2 fully
connected layers and a softmax output layer. The architecture
is shown in figure. This architecture did not use any data aug-
mentation while training and also no standardization technique
was used. The network reached about 80% training accuracy in
about 30 epochs. The importantthing to note here is that even
though the training accuracy is pretty high, the test accuracy

Fig. 35. CNN with tuned parameters Accuracy Graph

Fig. 36. CNN with tuned parameters Validation Loss

Fig. 37. Confusion Matrix

reaches a maximum of 54% for the same number of epochs
as the train set.

B. Convolutional Neurqal Network with Improved Accuracy

The previous network gives acceptable results but its ac-
curacy can be improved by slightly tweaking the architec-
ture. We first normalize the dataset within values [-1,1]. We
can also apply data augmentation techniques wherein we do
random noise addition as well random left and right image
rotation, to improve accuarcy. The final touch is adding batch
normalization layers after each convolution layer. By doing
this we force the input of every layer to have approximately
the same distribution in every training step. This prevents the
system from the internal covariate shift problem and decrease
training time. We get considerable improvement in the test
accuracy as the accuracy improves over the previous model
with a maximum of 60%.

C. Residual neural Network (ResNet)

Keeping the standardization and data augmentation as it is
we implement the ResNet architecture. A Residual Network,

Fig. 38. ResNet Accuracy Graph

Fig. 39. ResNet Validation Loss

or ResNet is a neural network architecture which solves the
problem of vanishing gradients in the simplest way possible,
i.e., by applying skip connections in a general residual block.
This allows the network to accommodate deep layers without
having the vanishing gradient problem. This network was
only trained for 25 epochs. Only 3 residual layers with 2
convolution layers each were used in this ResNet network.
As you can see the training accuracy reaches about 90% for
only 5 epochs.

D. ResNext

ResNext is a recent improvement on the ResNet architec-
ture. In addition to utilizing the concept of residual learn-
ing framework from ResNet, the concept of ”Cardinality”
is introduced in this network. Cardinality is the size of the
set of split transformations an input goes through before
to is passed on to the fully connected layers, as shown in
fig(44). In ResNext architecture, the input is split into different
paths(number of split paths is equal to the cardinality) and
convolutions are performed in each of these split paths. The
outputs of these split layers is then concatenated and added to
the input itself, followed by application of non-linearity. It is
empirically shown in the paper that even under the restricted
condition of maintaining complexity, increasing cardinality is
able to improve classification accuracy. Moreover, increasing
cardinality is more effective than going deep

E. DenseNet

In this architecture, skip connections are used in different
way, the output from one layer is added to all the next layers
output and feeded as input. In the final modification, the
enhanced network was added with 4 more convolution layers
to give a total of 6 convolution layers. 3 of these layers have
the same number of input and output channels while the other
layers have the same number of input and output channels
different from the first 3 layers. Each of the 3 layers was
connected to all its subsequent networks of the same input
size, thus yielding 7 connections in 6 networks, which in
the normal scenario would have been 5 connections only, as

Fig. 40. ResNext Architecture

Fig. 41. ResNext Architecture

Fig. 42. DenseNet Architecture

Fig. 43. DenseNet Architecture Layers

shown in Figure 18. This implementation is not a full-fledged
replication of the DenseNet architecture, but just a toy model.

REFERENCES

[1] https://www.tensorflow.org/tutorials/images/deepcnn
[2] Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le, Don’t

Decay the Learning Rate, Increase the Batch Size
[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual

Learning for Image Recognition
[4] https://dblp.org/rec/bib/journals/corr/HeZRS15
[5] Saining Xie, Ross B. Girshick, Piotr Dollar, Zhuowen Tu, Kaiming

He ´ Aggregated Residual Transformations for Deep Neural Networks
https://arxiv.org/abs/1611.05431

[6] Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger
[7] Densely Connected Convolutional Networks

https://arxiv.org/abs/1608.06993

