
Homework 0: Alohomora
Miheer Diwan

MS Robotics Engineering
Worcester Polytechnic Institute

Worcester, MA, 01609
Email: msdiwan@wpi.edu

Abstract—This report presents my results for Phase 1 and
Phase 2 of Homework 0 for the course CS/RBE 549: Computer
Vision and provides a brief analysis of the techniques used. Phase
1 of this homework involves the implementation of a probability
of boundary detection algorithm called ’pb-lite’ while Phase 2
deals with developing multiple CNNs for a classification task on
the CIFAR-10 data set.

I. PHASE 1: SHAKE MY BOUNDARY

In Phase 1 of this homework, I implemented a boundary
detector algorithm called ’pb-lite’ which is a simplified version
of the probability of boundary detection algorithm presented
in [1]. The output of the pb-lite algorithm is a per-pixel prob-
ability of boundary. Fig. 1 gives an overview of the algorithm.
First, we filter the input images with the filter bank and apply
k-means clustering to develop the texture, brightness and color
maps for an input image. We then compute the texture gradient
(τg), brightness gradient (Bg) and color gradient (Cg). We then
calculate the Chi-square distances with the help of half-disk
filters. Finally, we combine the information from the features
with baseline methods such as Sobel and Canny to get the
pb-lite output.

Fig. 1. Overview of pb-lite algorithm

A. Filter Bank

A filter bank consisting of various filters with different
scales and orientations was generated for the filtering operation
was used to measure the texture properties and to aggregate
regional texture and brightness distributions. It consisted of
three different sets of filters- Oriented Derivative of Gaussian
(DoG) Filters, Leung-Malik Filters and Gabor Filters.

Fig. 2. Oriented DoG Filter Bank

1) Oriented Derivative of Gaussian (DoG) Filters: This
filter bank consists of derivative of Gaussian kernels at two
scales (σ =1,2), 16 orientations and a kernel size of 9 and
15 respectively. The Gaussian kernel was generated using the
following formula:

g =
1

2πσ2
exp−

x2+y2

2σ2

The Gaussian kernel was then convolved with Sobel kernels
to get the derivative in the x and y direction.

Sx =

−1 0 1
−2 0 2
−1 0 1

 and Sy =

−1 −2 −1
0 0 0
1 2 1


2) Leung-Malik Filters: This filter bank consists of two

filter banks- LM Small (σ =1,
√
2,2,2

√
2) and LM Large

(σ =
√
2,2,2

√
2,4) with 48 filters each. Each filter bank consists

of 18 first and second DoG filters respectively with an elon-
gation factor of 3, at 6 orientations and 3 scales, 8 Laplacian
of Gaussian filters and 4 Gaussian Filters.

Fig. 3. Leung-Malik Filter Bank



The Laplacian of Gaussian kernel was generated it by
convolving the Gaussian kernel with a Laplacian kernel.

L =

0 1 0
1 −4 1
0 1 0


3) Gabor Filters: Gabor filters are generated by modulating

a sinusoidal plane wave with a Gaussian kernel. Multiple
Gabor filters were generated using the formula and varying
parameters such as kernel size, σ and λ:

g(x, y, λ, θ, ψ, σ, γ) = exp(−x′2+γ2y′2

2σ2 ). exp(i(2π x′

λ + ψ))

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

Fig. 4. Gabor Filters of different orientations and parameters

B. Texton Maps (τ ), Brightness Maps (B) and Color Maps (C)

Texture Maps were produced by filtering the input images
with the filter bank. Each filter produced a filtered output for
each image. Essentially, if there were N filters in the filter
bank, there were N filter responses at each pixel of the image.
In my case, the total filters = 176. We then applied k-means
clustering with a bin size = 64 on the filtered responses to get
the Texton map.
We used a similar approach to produce the Brightness maps,

however, we passed the grayscale images and the bin size =
16. For generating the Color maps, we passed the input image
in different color spaces such as RGB or HSV and clustered
them with a bin size = 16.

Fig. 5. Texton, Brightness and Colour Maps for Image 1

Fig. 6. Texton, Brightness and Colour Maps for Image 2

Fig. 7. Texton, Brightness and Colour Maps for Image 3

Fig. 8. Texton, Brightness and Colour Maps for Image 4

Fig. 9. Texton, Brightness and Colour Maps for Image 5

Fig. 10. Texton, Brightness and Colour Maps for Image 6

Fig. 11. Texton, Brightness and Colour Maps for Image 7



Fig. 12. Texton, Brightness and Colour Maps for Image 8

Fig. 13. Texton, Brightness and Colour Maps for Image 9

Fig. 14. Texton, Brightness and Colour Maps for Image 10

C. Gradients - τg , Bg and Cg

The texture gradient (τg), Brightness gradient (Bg) and
Color gradient (Cg) encode how much the texture, brightness
and color distributions are changing at a pixel. We compute
these by calculating the χ2 (Chi2) distance with the help of
half-disk filters. χ2 distances are calculated with the following
formula:

χ2(g, h) = 1
2 ∗

∑K
i=1

(gi−hi)
2

gi+hi

D. pb-lite outputs

Finally, I calculated the pb-lite outputs with the Canny and
Sobel baselines by using the following formula:

pb = τg+Bg+Cg

3 ⊙(w1 ∗ Canny + w2 ∗ Sobel)

E. pb-Lite Output Analysis

It can be observed that the probability of boundary edges
detected with the pb-lite algorithm are better than Sobel
baselines in terms of edges and better than Canny baselines in
terms of noise reduction. While the edges are not as prominent
as the Canny Baselines, there is significant reduction in the
background noise and the main object in the image has been
identified successfully. To improve the detected edges, I tried
experimenting with the number and orientations of Gabor
filters. I found that more orientations gave a better result.
However, using too many Gabor filters also increased the
background edges a bit. It should also be noted that the

clustering step randomly selects points and creates clusters
in every run of the program, thus slightly varying the results.

Fig. 15. Half-Disk Filters

Fig. 16. τg , Bg and Cg for Image 1

Fig. 17. τg , Bg and Cg for Image 2

Fig. 18. τg , Bg and Cg for Image 3

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

In this phase, we implemented multiple CNNs to perform
classification task on the CIFAR-10 dataset. The dataset had
10 classes, 50000 training images and 10000 test images.

A. Base Model

1) Network Architecture: My base model consists of three
2-D convolutional layers with a kernel size of 3 and three
linear layers activated by a ReLU activation function and
three MaxPooling layers. The input images are RGB images
of size 3*32*32. The first conv2D layer takes 3 as input
and outputs 32 channels. The next layer has 32 input and
16 output channels. The last conv2D layers has 16 input



Fig. 19. τg , Bg and Cg for Image 4

Fig. 20. τg , Bg and Cg for Image 5

and 8 output channels. The model also contains 3 fully
connected layers. The last linear layer has 10 output channels
because we have 10 classes. It is followed by a Softmax
layer which will normalize the outputs. The loss function used
was Cross entropy Loss and the optimizer used was AdamW.
The netwrok was trained for 20 epochs. The accuracy of this
network was 44.16 %.

Fig. 21. τg , Bg and Cg for Image 6

Fig. 22. τg , Bg and Cg for Image 7

Fig. 23. τg , Bg and Cg for Image 8

Fig. 24. τg , Bg and Cg for Image 9

Fig. 25. τg , Bg and Cg for Image 10

Fig. 26. Canny, Sobel and pb-lite output for Image 1

Fig. 27. Canny, Sobel and pb-lite output for Image 2



Fig. 28. Canny, Sobel and pb-lite output for Image 3

Fig. 29. Canny, Sobel and pb-lite output for Image 4

Fig. 30. Canny, Sobel and pb-lite output for Image 5

Fig. 31. Canny, Sobel and pb-lite output for Image 6

Fig. 32. Canny, Sobel and pb-lite output for Image 7

Fig. 33. Canny, Sobel and pb-lite output for Image 8

Fig. 34. Canny, Sobel and pb-lite output for Image 9

Fig. 35. Canny, Sobel and pb-lite output for Image 10

Fig. 36. Loss Vs Epochs

Fig. 37. Confusion Matrix


