
RBE/CS549: Homework 0 - Alohomora
Shrishailya Chavan

WPI Robotics Engineering
schavan@wpi.edu
Using 1 late day

Abstract—Here I have developed an algorithm of
pb(probability of boundary) boundary detection algorithm,
which finds boundaries by examining brightness, color, and
texture information across multiple scales. The output is a
per-pixel probability of boundary. Furthermore, I have also
trained and tested model using CIFAR-10 dataset on various
models such as Simple Neural Network, Modified Neural
Network, ResNet, ResNext and DenseNet.

Index Terms—Probability-based edge detection, Convolutional
Neural Networks, ResNet, ResNEXT, DenseNet, Pytorch.

I. PHASE 1: SHAKE MY BOUNDARY
This section is the implementation of the pb boundary

detection algorithm introduced. It is somewhat different from
the classical CV techniques that are universally used all over
like in Sobel and Canny Filters it uses the texture and color
information present in the image in addition to the intensity
discontinuities as well. This is done in 4 steps in the sections
to follow:

1) Filter Banks
2) Texture, Brightness and Color Maps T, B, C
3) Texture, Brightness and Color Gradients Tg, Bg, Cg
4) Pb-lite output combined with baselines
We will be going through all the above steps mentioned step

by step.

A. Filter Banks
Here, the first step of the given Pb lite boundary detection is

to filter out the images using the set of filter banks. Following
we have three different sets of filter banks for this purpose.
The use of these filters on images with these banks will help
us to build the low level features which represent texture.

1) Oriented DoG Filter Bank: Oriented DoG Filter Bank
are created by convolving a simple Sobel Filter and a Gaussian
kernel and further rotating results. Here I have total 2 scales
and 16 different orientations. The Filter bank has scale of 3
and 4 with kernel size 81. Fig. 1 shows these filters.

Fig. 1. DoG filters

2) Leung-Malik Filter Bank: The Leung-Malik filters are
a set of multi scale, multi oreintation filter bank with 48 filters.
It consists of first and second order derivatives of Gaussians at
6 orientations and 3 scales making a total of 36; 8 Laplacian of
Gaussian (LoG) filters; and 4 Gaussians. In LM Small (LMS),
the filters occur at basic sigma scales (1,

√
2, 2, 2

√
2 ). The

first and second derivative filters occur at the first three scales
with an elongation factor of 3. The Gaussians occur at the
four basic scales while the 8 LOG filters occur at sigma and
3sigma. For LM Large (LML), the filters occur at the basic
sigma scales (

√
2, 2, 2

√
2, 4). Fig. 2 represent these filters.

Fig. 2. LM filters

3) Gabor Filter Bank: Gabor filters are designed on the
filters in the human visual system. A Gabor filter is a gaussian
kernel function modulated by a sinusoidal plane wave. The
Gabot filter has scale of 8, 16 and 24, it also has 8 orientations
with 2, 4, 6 frequencies and kernel size of 49. Fig. 3 shows
these filters



Fig. 3. Gabor filters

B. Texton, Brightness, Color maps- T, B, C

1) Texton map: Filtering an input image with each element
of the filter bank results in a vector of filter responses centered
on each pixel. A distribution of these N-dimensional filter
responses could be thought of as encoding texture properties.
Here we have simplified this representation by replacing each
Ndimensional vector with a discrete Texton ID. We do this
by clustering the filter responses at all pixels in the image
into K Textons using K-means clustering. Each pixel is then
represented by a one dimensional, discrete cluster ID instead
of a vector of high-dimensional, real-valued filter responses.
This is then represented in the form of a single channel image
with values in the range of [1,2,3,...,K].K = 64. After that it
was observed that the filtered output of the images were low
intensity values that caused poor clustering. So, after filtering
the output image was normalized in the range of 0-255 which
improved the clustering.

2) Brightness Map: The concept of the brightness map is
as simple as capturing the brightness changes in the image.
Here, again we cluster the brightness values(gray scale equiv-
alent of the color image) using kmeans clustering into a chosen
number of clusters (K=16). We call the clustered output as the
brightness map B.

3) Color Map: The concept of the color map is to capture
the color changes or chrominance content in the image. Here,
again we cluster the RGB color values using kmeans clustering
into a chosen number of clusters (K=16). We call the clustered
output as the color map C. Figures 4 through 13 show these
texton, brightness and color maps for the ten different test
images.

Fig. 4. T, B, C maps for image 1

Fig. 5. T, B, C maps for image 2

Fig. 6. T, B, C maps for image 3

Fig. 7. T, B, C maps for image 4

Fig. 8. T, B, C maps for image 5

Fig. 9. T, B, C maps for image 6

Fig. 10. T, B, C maps for image 7

Fig. 11. T, B, C maps for image 8

Fig. 12. T, B, C maps for image 9



Fig. 13. T, B, C maps for image 10

C. Texture, Brightness and Color Gradients- Tg, Bg, Cg

Texture, Brightness and Color gradients encode how much
the texture, brightness and color distributions are changing
at a pixel. To obtain Tg, Bg, and Cg, we need to compute
differences of values across different shapes and sizes. This
can be achieved very efficiently by the use of Half-disk masks.

1) Half Disk Masks: The half-disc masks are simply (pairs
of) binary images of half-discs. These allow us to compute
the chi-square distances using a filtering operation, which is
much faster than looping over each pixel neighborhood and
aggregating counts for histograms. Forming these masks is
quite trivial. The set of masks used for this work with 8
orientations and 3 scales is shown in Fig. 14

Fig. 14. Half-disc masks

We compute Tg, Bg, Cg by comparing the distributions
in left/right half-disc pairs (opposing directions of filters at
same scale) centered at a pixel. If the distributions are the
similar, the gradient should be small. If the distributions are
dissimilar, the gradient should be large. Because our half-
discs span multiple scales and orientations, we will end up
with a series of local gradient measurements encoding how
quickly the texture or brightness distributions are changing at
different scales and angles. We will compare texton, brightness
and color distributions with the chi-square measure. The chi-
square distance is a frequently used metric for comparing two
histograms.

Figures 15 through 24 show the Tg, Bg, Cg gradients for
the ten test images.

Fig. 15. Tg, Bg, Cg gradients for image 1

Fig. 16. Tg, Bg, Cg gradients for image 2

Fig. 17. Tg, Bg, Cg gradients for image 3

Fig. 18. Tg, Bg, Cg gradients for image 4

Fig. 19. Tg, Bg, Cg gradients for image 5

Fig. 20. Tg, Bg, Cg gradients for image 6

Fig. 21. Tg, Bg, Cg gradients for image 7

Fig. 22. Tg, Bg, Cg gradients for image 8



Fig. 23. Tg, Bg, Cg gradients for image 9

Fig. 24. Tg, Bg, Cg gradients for image 10

D. Pb-lite output combined with baselines

Figures 25 through 34 show the final pb-lite output com-
bined with the canny and sobel baselines (both baselines have
been given equal weightage), alongside the original canny and
sobel results for comparison. It is observed that pb-lite edges
are lacking of most of the nosie that canny and sobel contain.
The reason is that it is good at suppressing the falsen positives
which show up the noise in sobel and canny. The final output
is better and can can be improved by changing the filters and
looking for the filter that can perform better than the existing
ones.

Fig. 25. Canny, Sobel, Pb-lite for image 1

Fig. 26. Canny, Sobel, Pb-lite for image 2

Fig. 27. Canny, Sobel, Pb-lite for image 3

Fig. 28. Canny, Sobel, Pb-lite for image 4

Fig. 29. Canny, Sobel, Pb-lite for image 5

Fig. 30. Canny, Sobel, Pb-lite for image 6

Fig. 31. Canny, Sobel, Pb-lite for image 7

Fig. 32. Canny, Sobel, Pb-lite for image 8

Fig. 33. Canny, Sobel, Pb-lite for image 9

Fig. 34. Canny, Sobel, Pb-lite for image 10

REFERENCES

[1] http://www.robots.ox.ac.uk/ vgg/research/texclass/filters.html
[2] https://stackoverflow.com/questions/55013954/how-to-apply-a-gabor-

filter-to-an-image-with-hexagonal-sampling
[3] https://www.delftstack.com/howto/python/gaussian-kernel-python/

II. PHASE 2: DEEP DIVE ON DEEP LEARNING
A. My first neural network

I am quite good at implementing neural networks and have
already studied Deep Learning in my first semester. I tried
to implement the simple neural network. There were a few
bugs in the starter code, but after debugging them I was



able to implement the most basic Neural Network following
the instructions in the assignment. The architecture for my
network is shown in the figure. I used the Adam Optimizer
with a learning rate of 0.001, and let the network train for 30
Epochs with a batch size of 25. I also applied MaxPooling to
all the layers. Furthermore, I used CrossEntropy loss function.
After each epoch I calculate the mean loss and accuracy and
plotted them accordingly. The number of parameters in the
network are 25218. The test set was able to predict the image
with an accuracy of 14.04%. This is understandable since
I just simply wanted to train a neural network without any
complications. The architecture is shown in figure 35. The
confusion matrix for the training set and testing set is shown
in figure 36, 37. Additionally, I have also plotted the Test
accuracy against total number of epochs.

Fig. 35. My Simple CNN

Fig. 36. (a) Train Confusion Matrix (b) Test Confusion Matrix for SimpleNN

Fig. 37. (a) Train Confusion Matrix (b) Test Confusion Matrix for SimpleNN

Fig. 38. Train - Loss, Acc vs epochs for SimpleNN

Fig. 39. Test- Acc vs epoch for SimpleNN

B. Improved Network

To improve my simple Neural Network I added some fea-
tures and applied Standardization to try and improve accuracy.
I also applied Batch Normalization to the layers here to
increase the accuracy. I kept epochs at 30. Batch size was
also 25 for this network too. The results are shown in figures.
The number of parameters are 147794. Here, I used the Adam
optimizer with learning rate of 0.001. After improving the
simple neural network by applying various methods I was able
to improve my accuracy by some extent(I was expecting to
increase it a bit more but it didn’t), I think I need to make some
more changes by increasing number of epochs and adding
more layer to my network which will result in increasing the
accuracy of my network. The Testing accuracy that I got was
20.59%. I have plotted the mean Training and loss against the
total number of epochs, calculated the Testing and Training
Confusion Matrix with their respective tables. The Testing
accuracy was also plotted against the total number of epochs.



Fig. 40. Architecture for my Improved NN

Fig. 41. (a) Train Confusion Matrix (b) Test Confusion Matrix for Improved
NN

Fig. 42. (a) Train Confusion Matrix (b) Test Confusion Matrix for Improved
NN

Fig. 43. Train - Loss, Acc vs epochs for Improved NN

Fig. 44. Test- Acc vs epoch for Improved NN

C. ResNET
Further, I implemented the ResNET to increase my accuracy

compared to the previous two implemented simple networks.
The network implemented has 3, 3, 6 and 3 layers respectively,
further we developed a Residual Block to implement our
ResNET Network. The whole idea behind the ResNET is
to skip the layers which the normal NN usually do, which
requires a lot of computation. The architecture is shown below
in figure 45. The general NN try to approximate the ideal
solution by doing backward propogation and hypertune the
weights. But as the gradient starts to vanish, you start to
oscillate and never converge to a solution. Thus, instead of
calculating approximate value to the idea solution, ResNET
takes the ideal solution and tries to approximate the residual
by skipping some of the layers. Please read up the papers for
the exact details. I trained ResNET with Batch Size of 25,
did data standardization same as improved network, number
of epochs = 30, also used weight decay as 0.001 as a part
of Adam optimizer. The number of parameters of ResNET
are 21298314. The accuracy for testing was around 14.98%
which is pretty low. My training accuracy is more than testing
accuracy which might be because there might be meaningful



differences between the kind of data I trained the model on
and the testing data that I am providing for evaluation which
I need to figure out. Furthermore, I think the reason for low
accuracy might as well be that I am training my model on
low epochs but my model was consistent and works properly
as I have followed the official documentation. For this model
I have plotted the Training, Testing and loss with respect to
total epochs. Furthermore, I have also calculated the Testing
and Training Confusion Matrix as well.

Fig. 45. Architecture of ResNET

Fig. 46. (a) Train Confusion Matrix (b) Test Confusion Matrix for ResNET

Fig. 47. (a) Train Confusion Matrix (b) Test Confusion Matrix for ResNET

Fig. 48. Train - Loss, Acc vs epochs for ResNET

Fig. 49. Test- Acc vs epoch for ResNET

D. ResNEXT

ResNEXT Neural Network is a slight improvement on the
ResNET model. According to the paper they add one more
layer to the ResNET model for an improvmenet of 0.2-0.3%
accuracy. As required I got the accuracy for ResNext model
greater than that of ResNET model. The Testing accuracy I
got for my ResNEXT model is 18.76% I implemented the
ResNEXT 50 model here with cardinality equals to 32 which is
mentioned in the offical paper. The total number of parameters
that I got in this are 25028904. I used the Adam optimizer with
weight decay of 0.001 for improving the results. The total
number of epochs for this are 30 with batch size of 25. For
this model I have plotted the Training, Testing and loss with
respect to total epochs. Furthermore, I have also calculated the
Testing and Training Confusion Matrix as well.



Fig. 50. Architecture for ResNEXT

Fig. 51. (a) Train Confusion Matrix (b) Test Confusion Matrix for ResNEXT

Fig. 52. (a) Train Confusion Matrix (b) Test Confusion Matrix for ResNEXT

Fig. 53. Train - Loss, Acc vs epochs for ResNEXT

Fig. 54. Test- Acc vs epoch for ResNEXT

E. DenseNet
DenseNet is an interesting NeuralNetwork. The idea that

if there are L layers in the network, the Lth layer gets
L∗(L + 1)/2 inputs to it. The DenseNet also makes use of
Denseblocks, denselayers and transition layers which are used
to transform the information into different sizes. For this model
I got an Testing accuracy around 11.82% which was because I
implemented the most basic DenseNet model. The other reason
might be the less number of epochs on which I am training my
model. I trained it on 30 epochs with batch size of 25. I used
Adam optimizer with weight decay of 0.001 to increase the
accuracy. The total number of parameters in this DenseNet are
1071946. For this model I have plotted the Training, Testing
and loss with respect to total epochs. Furthermore, I have



also calculated the Testing and Training Confusion Matrix as
well. Further, by implementing more layers and making some
amends in Network we can increase the accuracy.

Fig. 55. Architecture for DenseNet

Fig. 56. (a) Train Confusion Matrix (b) Test Confusion Matrix for DenseNet

Fig. 57. (a) Train Confusion Matrix (b) Test Confusion Matrix for DenseNet

Fig. 58. Train - Loss, Acc vs epochs for DenseNet

Fig. 59. Test- Acc vs epoch for DenseNet

F. Analysis

From all the networks that I developed and tested, the
number of parameters, all the required graphs, accuracy for
30 epochs with batch size of 25 are shown here. I got more
accuracy for my Improved Neural Network. Among ResNet,
ResNEXT and DenseNet I got more accuracy for ResNEXT
which is improved model of ResNet. The Training accuracy
for all models was more than that of Testing accuracy, the
reason might be that there are some meaningful differences
between the kind of data I trained the model on and the testing
data which I am providing for evaluation. Maybe I need to
tune some hyperparameters to fix it. I will further perform the
Data Augmentation and various other tricks so that the Testing
accuracy increases. For the above all models I have calculated



the Testing and Training Confusion Matrix as well. Further,
by implementing more layers and making some amends in
Network we can increase the accuracy. I think models are
good enough to get a good accuracy, I need to work on other
parameters to increase the accuracy of my model and train it
on high computations machines to run them smoothly.

REFERENCES

[1] https://medium.com/jovianml/using-resnet-for-image-classification-
4b3c42f2a27e

[2] https://arxiv.org/pdf/2110.04632v1.pdf
[3] https://medium.com/jovianml/using-resnet-for-image-classification-

4b3c42f2a27e


