
RBE/CS549: Computer Vision
Homework 0 - Alohomora

Shreya Bang
M.S. Robotics Engineering

Email: srbang@wpi.edu
Using 1 Late Day

Abstract—This assignment comprises of two phases. The Phase
1 presents the development of pb (probability of boundary)
algorithm which improves the classical methods of edge detection
like Canny and Sobel baselines. In Phase 2, multiple neural
network architectures have been implemented and compared on
the various criterion to study approaches to architectures work
better for given CIFAR dataset.

Index: Boundary Detection, Canny, Sobel, Deep Learning

I. PHASE 1: SHAKE MY BOUNDARY

A. Overview

The Phase 1 aims at the simplified version of Probability of
boundary detection algorithm. It calculates the per-pixel prob-
ability of boundary by examining brightness, color, and texture
information across multiple scale. This algorithm considers 4
steps:

1) Generating filter bank: Oriented DoG filters, Leung-
Malik Filters and Gabor Filters

2) Computing Texton, Brightness and Color map
3) Finding the gradients of texture, brightness and color for

each pixel
4) Combining the output with Canny and Sobel for bound-

ary detection

Fig. 1. Overview of the pb lite pipeline

B. Generation of filter bank

The first step of the pb lite boundary detection pipeline is
to filter the image with a set of filter banks. We create three
different sets of filter banks.

1) Oriented DoG Derivative of Gaussian filters: A simple
DoG filter is created by convolving a Gaussian kernel with
Sobel filter. Then rotated the results of DoG filters in 16
orientations ranging from 0 to 360 degree and 2 different scales
which generated of 32 filters. The Sobel filter used is given
by following:

For Oriented DoG filter bank, Gaussian kernel size = 17 and
scales = [1,2] are taken. Illustration of the DoG filter bank is
shown in Fig.2.

Fig. 2. Oriented DoG Filter Bank

2) Leung-Malik Filters: The Leung-Malik filters or LM
filters are a set of multi scale, multi orientation filter bank
with 48 filters. It consists of first and second order deriva-
tives of Gaussians, Laplacian of Gaussian (LOG) filters and
Gaussians. This filter has been applied in two versions:
LM Small and LM Large. Scales considered for LM Small
are σ = {1,

√
2, 2, 2

√
2} and LM Large (LML) are σ =

{
√
2, 2, 2

√
2, 4}. The first and second derivative of Gaussian

occur at first three scales with σx = σ and σy = 3σx whereas
the Gaussians occur at all the basic scales and LOG occur at σ
and 3σ. The kernel size for Gaussian filter is 33. Illustrations
of Leung-Malik Small and Large Filter Bank are shown in
Fig.3 and Fig.4 respectively.

3) Gabor Filters: The gabor filter has a gaussian kernel
modulated with a sinusoidal plane kernel. This consists of
gabor filters with different standard deviation for the gaussian
and different frequency for the sinusoids, which are further

Fig. 3. LM Small Filter Bank

Fig. 4. LM Large Filter Bank

rotated to get different orientations. To generate these filters,
it takes 5 variables. These variables are σ, θ, λ, ψ and γ,
where λ is the standard deviation, θ is the rotation, λ is the
wave length, ψ is the offset and γ is the offset of the filter in
terms of width. Following is the illustration of Gabor filters
generated at the scales = [5,7,9,11,13] with 8 orientations.

Fig. 5. Gabor Filter Bank

C. Texton, Brightness, and Color Map

To create Texton maps, all the filters (total 168) are applied
to the image and a stack of resultant outputs is obtained. Now
the task is to group the pixels having similar texture properties

and give a discrete texton ID to each pixel. This is done by
KMeans clustering method where the similar pixel values will
be assigned to one cluster. In this case, 64 cluster centers are
being used to categorize each pixel. We can infer that more
number of clusters means more detail about the texture and
vice-versa.

The texton map gives the information about texture prop-
erties in the image. To create Texton maps, individual filter
from the filters bank (168, in this case) is applied on the image
which results in a vector of filter responses centered on each
pixel. Now, we have 168 filter responses at each pixel. Further,
the pixels having similar texture properties are grouped using
KMeans clustering method with number of clusters=64 and
then a discrete texton ID is assigned to each pixel. Similarly,
the brightness and color maps are used to encode the intensity
and color values for each pixel respectively. Further, the
brightness map is the default gray scale values clustered
into 16 clusters and the colors is normalized RGB values
clustered into 16 values. Results on the each image from
BSDS500 dataset can be seen in Fig.6. (Figure(a): Texton
Map, Figure(b): Brightness Map, Figure(c): Color Map)

Fig. 6. Texton, Brightness and Color Maps

D. Texton, Brightness and Color Gradients

Gradient maps help us to define a series of local gradi-
ent measurements i.e. the change in distributions of texture,
brightness and color at a particular pixel. For computing
Texton, Brightness and Color gradients, we need to compute
differences of values across different shapes and sizes. Hence,
initially half disk mask and chi-square distance is generated.

1) Half-disc masks: The half-disc masks are simply pairs
of binary images of half-discs. These discs are generated for
8 orientations. Illustration of Half-disc masks can be seen in
Fig.7.

2) Chi-Distance: The Chi-Distance is used to calculate
the distance between two histograms, that is, the difference
between the distributions in left and right half-disc pairs. The
Chi-Distance is calculated with the following equation:

The output afters computing texton, brightness and color
gradients for all the images are given in Fig.8: (Figure(a):
Texton Gradient, Figure(b): Brightness Gradient, Figure(c):
Color Gradient)

Fig. 7. Half-Disc Mask

E. Pb-lite Output
The last step in the pipeline is to combine all the information

of features obtained with Sobel and Canny edge detectors. For

Fig. 8. Texton, Brightness and Color Gradients

the same, following equation is used.
Here, W1 and W2 in the equations are the weight. For

the calculation purpose, values of W1 and W2 are taken as
(0.9,0.1). However, one can make these weights dynamic.

The comparative outputs between Canny baseline, Sobel
baseline and Pb-lite output are shown in Fig.9.

F. Observation

Considering the above results, Pb-lite outperforms the
Canny output in terms of cancellation of noise; whereas,

Fig. 9. Canny, Sobel and Pb-lite responses

outperforms the Sobel output in terms of edge detection. Since,
Pb-lite can control the intensity of texture, brightness and color
details, improvised responses can be obtained by choosing

optimized weights. Also, filter bank plays an important role
as responses can also be improvised with the optimum scales
and kernel sizes.

II. PHASE 2: DEEP DIVE ON DEEP LEARNING

A. Overview

The Phase 2 focuses on the implementation of multiple
neural network architectures CIFAR-10 dataset consisting of
consists of 32x32 size 50,000 training and 10,000 test images
for the image classification. Further these architectures are
compared with each other on the basis of different factors like
number of parameters, training and testing losses, training and
testing accuracies.

B. Basic Neural Network

The basic architecture has 4 convolution layers with max
pooling and 2 linear layers to classify the images into 10
classes.

The optimizer used is Adam with decay rate=0.0001 and
learning rate=0.002. The network is structured with the fol-
lowing parameters.

1) Number of epochs: 15
2) Batch size: 100
3) Optimizer: ADAM

Without standardization and data augmentation, accuracy
achieved on testing set is 48.57%. The training losses and
accuracy has been plotted in Fig.10 and Fig.11. The confusion
matrix for testing accuracy of simple neural network can be
seen in Fig.12.

Fig. 10. Training Accuracy over Epoch of Basic Neural Network

C. Modified Neural Network

Considering the testing accuracies and losses of the Basic
Neural Network, it has been modified in such a way to
achieve more accuracy by decreasing the losses. For the same,
basic model has been modified, which has 3 Convolution
layers followed by 2 linear layes giving 10 as the output
size. In the basic model, overfitting was observed. Therefore,
to avoid overfitting, also to improve the learning speed of
Neural Networks, batch normalization method has been opted.
Further, addition of 3 batch normalization layers provided

Fig. 11. Training Losses over Epoch of Basic Neural Network

Fig. 12. Confusion Matrix for Testing Accuracy of Simple Neural Network

regularization. Keeping the optimizer used as same, Adam
with decay rate=0.0001 and learning rate=0.002. This network
is structured with the following parameters.

1) Number of epochs: 15
2) Batch size: 100
3) Optimizer: ADAM

The testing accuracy achieved with the modifications is
59.22%. The training losses and accuracy has been plotted
in Fig.13 and Fig.14.

Fig. 13. Training Accuracy over Epoch of Modified Neural Network

Fig. 14. Training Losses over Epoch of Modified Neural Network

The confusion matrix for testing accuracy of modified
neural network can be seen in Fig.15.

Fig. 15. Confusion Matrix for Testing Accuracy of Modified Neural Network

D. ResNet

For the tasks like Image classifications, adding more layers
to the neural network tend to increase the accuracy as more
layers progressively learn more complex features. But it comes
along with the problem of vanishing gradients. Hence to solve
this problem, the skip connection in ResNet helps by allowing
alternate shortcut path for the gradient to flow through. The
ResNet architecture is implemented for the following param-
eters:

1) Number of epochs: 15
2) Batch size: 100
3) Optimizer: ADAM

The training losses and accuracy has been plotted in Fig.16
and Fig.17.

The confusion matrix for testing accuracy of modified
neural network can be seen in Fig.18.

III. CONCLUSION

The architectures implemented in this homework over the
CIFAR-10 dataset and the test accuracies achieved are tabu-
lated below:

Fig. 16. Training Accuracy over Epoch of ResNet

Fig. 17. Training Losses over Epoch of ResNet

Fig. 18. Confusion Matrix for Testing Accuracy of ResNet

From the above, we can infer that a little modification in
the basic neural network tend to give better accuracy. The
accuracy of the model can be improved with the addition of
layers. Also tuning of the hyperparameters play an important
role to achieve better accuracy.

Network Test Accuracy
Basic Neural Network 48.57%

Modified Neural Network 59.22%
ResNet 27.39%

