
Project 4: Visual Inertial Odometry
(Using 1 Late Day)

Karter Krueger
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA 01609

Email: kkrueger2@wpi.edu

Tript Sharma
Department of Robotics Engineering

Worcester Polytechnic Institute
Worcester, MA, 01609

Email: tsharma@wpi.edu

I. INTRODUTION

This project is to demonstrate how we can combine camera
and IMU data to compute pose and orientation in realtime
with high precision leveraging the fast and precise IMU data
along with slow but drift-resistant camera data. We implement
the Stereo MSCKF algorithm to achieve this task.

II. CODE IMPLEMENTATION

The code for this project followed the structure of the
original stereo MSCKF written in C++, as it was converted
for this class over to Python for the template/starter code with
7 key functions missing for us to implement based on the
MSCKF paper. We describe our code and some of the math
that went into it from the paper in the following sections below.

A. Initialize Gravity and Biases

This method defines the initial gravity and bias using the
first 200 IMU data-points. Since the camera-IMU pair is
stationary during this period, we can compute the gravity as
an average of the acceleration measurements for the given
timestamps. Setting the initial gravity vector is important for
us to reference throughout the rest of the code to determine
the change in orientation of the IMU. Orientation of a (non-
accelerating) IMU can be determined by finding the angles
between the current accelerometer values and the initial gravity
vector values. The gyro bias terms are also important as we
must subtract the bias to get an accurate angular velocity
reading from the gyro. If we didn’t remove bias, then there
could be a small constant value added to the readings that
would make the robot think it is constantly rotating even when
it is stationary, which would cause drift.

B. Batch IMU Processing

This method processes the IMU buffer messages to compute
the motion model. It checks whether the IMU recordings (in
the buffer) are within the current camera feature recording
timestamp. If so, we compute the process model for the current
frame using all the unused IMU recordings till now.

C. Process Model

The process model is one of the key functions of the Kalman
Filter as it runs the dynamics on the IMU error state to update
the state covariance matrix and set the null-space values for
the orientation, position, and velocity of the IMU. This method
follows the equations outlined in section III.A of the MSCKF
paper. First, we take the raw gyro and accelerometer readings
and subtract the gyro and accelerometer biases, respectively.
We also determine a dt as the change in time between the
current IMU message and the last timestamp processed for
the IMU-state. Next, we build the F and G matrices from
the appendix A section of the paper. The F matrix is of
size (21, 21) and is comprised of the screw matrix of the
gyro omega vector, several identity matrices, and rotated
acceleration vectors, as shown in the excerpt from the paper
in Fig. 1.

Fig. 1. F matrix from the MSCKF paper

The G matrix is constructed of size (21, 12) with several
identity matricies and a rotation matrix of the orientation, as
seen in the paper Fig. 2 below.

Fig. 2. G matrix from the MSCKF paper



Once we have the F matrix, we estimate Phi using the 3rd
order matrix exponential using (Fdt = F∗dt), (F 2

dt), and (F 3
dt)

as a Taylor-series expansion. We then run PredictNextState
on the IMU values to propagate the state using the 4th
order Runge-Kutta. We then follow math from the paper
and reference code to modify the transition matrix using the
null-orientation and orientation to rotate the gravity vector
and modify the Phi matrix exponential. Once Phi is ready,
we propagate the state covariance matrix using Phi and Q
computed from Q = Phi * G * cov-noise * G.T * Phi.T * dt.
Lastly, we force the covariance to be symmetric as ((cov +
cov.T) / 2.0), and update the null-space values for orientation,
position, and velocity of the IMU-state.

D. Predict New State

Since the states are defined as error w.r.t the previous state,
we need to integrate all the previous states to predict the new
state. The continuous dynamics of the estimated IMU state
using equations given in the figure 3 has been linearized in
Section II-C. To deal with the discrete time measurements of
IMU, we propagate the state using a numerical integration
function i.e. 4th order Runge-Kutta (RK4).

Fig. 3. Continuous State Dynamics Equations from the MSCKF paper

The orientation, pose and velocity are computed along with
[ωX ]. Using equations in Figures 3 and 4 we compute δq̄ ∗ δt
which defines the new state orientation. It is also necessary to
compute RK4 of velocity and pose.

Fig. 4. Quaternion error state from OpenVINS documentation

E. State Augmentation

When a new image is captured, the camera pose is estimated
and appended to the state vector. We first collect and compute
all the rotation and translation matrices between World, IMU,
and Camera coordinate frames. We also create a new Camera

State to add to the state-server for later processing. Then we
compute the matrix J, from the paper appendix B, shown
in Fig. 5, which is required to update the state covariance
matrix. J is comprised of the rotation from IMU to Camera
frame, identity, and a skew matrix of the rotation from IMU
to World with the translation from cam to IMU. We then
resize the state covariance matrix to add 6 rows and columns
for the new camera state of 6 values. The state covariance
matrix is then updated by setting the bottom left section
to (J ∗ IMU − cov), top right section to the transpose of
the bottom left (symmetrical for IMU-Cam and Cam-IMU),
and the bottom right section to the Cam-Cam covariance,
computed from (J ∗ CIJ.T ) with C being top-right section
covariance. We lastly enforce overall covariance symmetry
with State-Cov = (State-Cov + State-Cov.T) / 2.

Fig. 5. Matrix J from the MSCKF paper appendix

F. Add Feature Observations

Here we take in a new feature message and add the features
to the map server. We loop over all features (stereo points
from the images) in the message, check if each feature is
already in the map server, and update the observations for the
corresponding (matching ID) IMU message. Then we update
the tracking-rate based on trackedFeatures

stateFeatures+0.00001 .

G. Measurement Update

The measurement update is another crucial component to
the Kalman filter, as it computes the Kalman gain and updates
the state values such as position, velocity, and orientation.
First, we decompose the Jacobian matricies H and r using
QR decomposition (with the Numpy function in ”reduced”
mode for sparcity) to reduce the computational complexity. We
compute the Kalman gain following K = linearSolve(S,H ∗
P ).T using S = H ∗P ∗H.T + obsCov ∗ I . This formulation
is in-line with the following Kalman gain from equation 29 of
the original MSCKF paper, in Fig. 6.

Fig. 6. Equation 29 from original MSCKF paper to compute K for Kalman
Gain

The correction to the state is then computed using equation
30, as ∆X = K ∗ r. The ∆IMU is the first 21 values of the
∆X . We then get the IMU-DQ using the quaternion small-
angle formula on the first 3 IMU state components. We update
orientation using quaternion multiplication of the previous
orientation and the new IMU-DQ. The rest of the IMU state
components are updated by adding the respective ∆IMU
components for GyroBias, Velocity, AccelerometerBias, and
Position. We then update the IMU rotation and translation



components of the IMU to Camera frames using the small-
angle quaternion of latter components 15-18 of the ∆IMU .
After updating the IMU state components, we now update
the camera states by looping through them and applying the
respective rotation and translation components of the ∆X that
correspond to each camera state. We again use the small-angle
quaternion form and multiplication to compute the updates.
Lastly, we force the state covariance matrix to be symmetric
again using stateCov = (stateCov + stateCov.T )/2.

III. RESULTS

Our project upload contains a video of the full flight, with
a view of the full-flight path below in Fig. 8. You can see our
flight path successfully tracks the ground truth very closely.
We computed the ATE as 0.08m translation, shown in Table
I.

Fig. 7. Estimated Trajectory

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 8. Estimated Trajectory vs Groundtruth (via VICON)

The Absolute trajectory Error (ATE) and Relative Pose Error
(RPE) using RMSE for the Rotation and Translation values
have been mentioned in the Table below:

ATE RPE
Rotation 1.780931681713913 3.033415405486056
Translation 0.08175968722637134 0.22720598410625495

TABLE I
RMSE ATE AND RPE

This project was a great learning experience to teach us
first-hand how a Kalman filter works through all of the
important components, especially with predicting the next
state, computing the process model, and updating the covari-
ance and state. We are thankful for the OpenVINS resource
(https://docs.openvins.com/pages.html) for showing the deriva-
tions through challenging parts. We also give credit to the code
provided by this class to show us how the rest of the steps
work, and credit to the original MSCKF author’s Github repos-
itory (https://github.com/KumarRobotics/msckf vio/) which
gave us guidance through a few tricky parts that weren’t fully
clear in the paper.


