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I. METHODOLOGY FOR IMPLEMENTATION

All following functions are based on the references given
in the problem descriptions [1, 2, 3, 4]

A. Initialize Gravity and Bias

The biases of the measured angular velocity bg ∈ R3

are calculated by averaging the first few hundreds of IMU
messages:

bg =
1

N

N∑
k=1

ωm,k (1)

where ωm,k ∈ R3 is measured angular velocity at time instant
k.

The gravitational acceleration, Ig ∈ R3, expressed in the
local frame, is also calculated in a similar fashion:

Ig = − 1

N

N∑
k=1

am,k (2)

The gravitational acceleration, Ig ∈ R3, expressed in the IMU
frame, can then be calculated as:

Gg =

 0
0

−∥Ig∥

 (3)

The initial orientation between the inertial frame and the IMU
frame can be established as:

Ig = C( I
Gq̄)

Gg (4)

where C(·) denotes a rotational matrix. Let v = Gg× Ig. Let
s = ∥v∥ (sine of angle). Let c = a · b (cosine of angle). Then
the rotation matrix C( I

Gq̄) is given by:

C( I
Gq̄) = I + [v]× + [v]2×

1− c

s2
(5)

B. Batch IMU Processing

In this module, the imu messages in the imu msg buffer
would be processed. The process model is executed for each
imu message. The state information is subsequently updated.
This process is repeated until the time bound is reached. The
time bound is set by the message time of the current image
message, so that all imu messages received before the image
message would be processed. The processed imu messages are
subsequently removed from the buffer.

C. Process Model

1) Remove the bias from the measured gyro and accelera-
tion:

ω̂ = ωm − b̂g (6)

â = am − b̂a (7)

2) Compute discrete transition and noise covariance ma-
trix:

F =



−[ω̂]× −I3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

−C( I
Gq̄) 03×3 03×3 −C( I

Gq̄) 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3


(8)

Note the F is made square as to enable matrix operations.

G =



−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C( I
Gq̄) 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3


(9)

3) Approximate matrix exponential: The discrete state time
state transition matrix at time instance k can be calculated as:

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

F(τ)dτ

)
≈ exp(F(tk+1 − tk)) = exp(F∆t)

(10)

For matrix exponential exp(X), we have its Taylor expansion
as:

exp(X) =

∞∑
k=0

1

k!
Xk (11)

where X0 is defined to identity matrix I with the same
dimensions as X .

The matrix exponential is then approximated to the 3rd or-
der, which can be considered to be accurate enough assuming
∆t < 0.01s:

Φk ≈
3∑

k=0

1

k!
Fk∆tk = I +F∆t+

1

2
F2∆t2 +

1

6
F3∆t3 (12)
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4) Modify the transition matrix: The transition matrix is
modified in the following fashion [2, 5]:

Φk[0 : 3, 0 : 3] = C( I
Gq̄k)C(GI q̄k−1)

u = C( I
Gq̄k−1)

Gg

s =
uT

∥u∥

(13)

Then we can update the transition matrix in discrete time
as follows:

Φk+1[6 : 9, 0 : 3] = Φk[6 : 9, 0 : 3]

− (Φk[6 : 9, 0 : 3]u− [
G ˙̂vk−1 −

G ˙̂vk]×
Gg)s
(14)

Φk[12 : 15, 0 : 3] = Φk[12 : 15, 0 : 3]

− (Φk[12 : 15, 0 : 3]u

− [∆t
G ˙̂vk−1 +

G ˙̂pI,k−1 −
G ˙̂pI,k]×

Gg)s
(15)

5) Propagate the state covariance matrix: We employ the
following partitioning for the covariance:

Pk|k =

[
PIIk|k PICk|k

PT
ICk|k

PCCk|k

]
(16)

where PIIk|k is the 21×21 covariance matrix of the evolving
IMU state, PCCk|k is the 6N × 6N covariance matrix of the
camera pose estimation, and PICk|k is the correlation between
the errors in the IMU state and the camera pose estimates.

The covariance matrix of the propagated state can then be
given by:

Pk+1|k =

[
PIIk+1|k ΦkPICk|k

PT
ICk|k

ΦT
k PCCk|k

]
(17)

where the propagated covariance of the IMU state is:

PIIk+1|k = ΦkPIIk|kΦ
T
k +Qk (18)

The discrete-time noise covariance matrix Qk can be com-
puted as:

Qk =

∫ tk+1

tk

Φ(tk+1, τ)GQGΦ(tk+1, tk)
T dτ

≈ ΦkGQGΦT
k∆t

(19)

6) Fix the covariance to be symmetric: The covariance is
then fixed to be symmetric:

Pk+1|k =
Pk+1|k +PT

k+1|k

2
(20)

D. Predict New State

Refer to Eq. (6) in [2], we have:

I
G
˙̄qt =

1

2
Ω(ω(t)) I

Gq̄t. (21)

According to Section 1.6.1 in [5]:

I
Gq̄t+∆t = exp

(
1

2
Ω(ω)∆t

)
I
Gq̄t (22)

exp

(
1

2
Ω(ω)∆t

)
=

(
cos

(
∥ω∥
2

∆t

)
· I4×4

+
1

∥ω∥
sin

(
∥ω∥
2

∆t

))
·Ω(ω)

(23)

The above expression will cause numerical instability for very
small ω, due to ∥ω∥ appearing in the denominator. The limit is
therefore computed of the above equation as ∥ω∥ goes towards
zero, using L’Hôpital’s rule.

lim
∥ω∥→0

exp

(
1

2
Ω(ω)∆t

)
= (I+

∆t

2
Ω(ω)) (24)

The quaternions I
G
q̄t+∆t/2 at t+ ∆t

2 and I
Gq̄t+∆t at t+∆t can

then be calculated accordingly.
We apply the 4th-order Runge-Kutta method for numerical

integration.

k1,v = C(GI q̄t+∆t)â+ Gg

k1,p =
G ˙̂vt

k2,v = C(G
I
q̄t+∆t

2
)â+ Gg

k2,p =
G ˙̂vt + k1,v

∆t

2
k3,v = C(G

I
q̄t+∆t

2
)â+ Gg

k3,p =
G ˙̂vt + k2,v

∆t

2
k4,v = C(GI q̄t+∆t)â+ Gg

k4,p =
G ˙̂vt + k3,v

∆t

2

(25)

Putting the slopes together, we have:

G ˙̂pI,t+∆t ≈
G
G ˙̂pI,t +

∆t

6
(k1 + 2k2 + 2k3 + k4) (26)

And
G ˙̂vt+∆t

≈
G ˙̂vt +

∆t

6
(k1,v + 2k2,v + 2k3,v + k4,v) (27)

E. State Augmentation

Based on Equation 16 and Equation 17, when new images
are received, the state should be augmented with the new
camera state. The pose of the new camera state can be
computed from the latest IMU state:

C
Gq̂ = C

I q̂ ⊗
I
Gq̂

C
Gp̂c =

Gp̂c + C( I
Gq̂)

T I p̂c
(28)

where C
Gq̂ is the quaternion of the new camera with respect to

the world frame, C
I q̂ is the quaternion of the new camera with

respect to the IMU frame, I
Gq̂ is the quaternion of the IMU

with respect to the world frame, C
Gp̂c is the position of the new

camera with respect to the world frame, Gp̂c is the position
of the IMU with respect to the world frame and I p̂c is the
position of the new camera with respect to the IMU frame.

Therefore, as shown in the reference [3], the augmented
covariance matrix is:



PIk|k =

[
I21+6N

J

]
Pk|k

[
I21+6N

J

]T

J =
[
JI 06×6N

]
JI =

[
C( I

Gq̂) 03×9 03×3 I3 03×3

−C( I
Gq̂)

T [I p̂c]× 03×9 I3 03×3 I3

] (29)

where N is the number of the camera states.
Eventually, the covariance is fixed to be symmetric:

Pk+1|k =
PIk+1|k +PT

Ik+1|k

2
(30)

F. Add Feature Observations
We would like to add all features in feature_msg to

self.map_server.
If the feature does exist in the self.map_server before,

then, we will directly store it into the self.map_server.
Otherwise, we will store the feature into the observation set
of self.map_server. The features in the observation set
mean the features are tracked, therefore, we can calculate out
the tracking rate correspondingly.

G. Measurement Update
As described in the papaer [3], we can obtain the residual

of the measurement is defined as :

rjo = Hj
X,ox̃+ nj (31)

Therefore, we can update the extend Kalman filter[2] as
following:

Firstly, we will employ the QR decomposition of the matrix
Hx:

ro =
[
Q1 Q2

] [TH

0

]
x̃+ no[

QT
1 ro

QT
2 ro

]
=

[
TH

0

]
x̃+

[
QT

1 no

QT
2 no

] (32)

Then we can derive that:

rn = QT
1 ro

= TH x̃+ nn

= TH x̃+QT
1 no

(33)

Furthermore, we can compute Kalman gain:

K = PTT
H(THPTT

H +Rn)
−1 (34)

where P is the transition matrix, Rn is the observation noise.
then, the state error can be calculated via:

δx = Krn (35)

Eventually, the state covariance matrix can be updated
through:

Pk+1|k+1 = (I−KTH)Pk+1|k(I−KTH)T +KRnK
T

(36)

II. RESULTS

The estimated and ground truth trajectories are both plotted
in x-y plane and 3d space, as shown in Figure 1. We can
see that they tightly match each other, indicating an accurate
estimation.

This observation is further backed by qualitative analysis,
which is summarized in Table I. We can see that our estimated
trajectory has small RMSE, and mean and median errors.
The std is also small, which suggests consistent tracking
performance.

TABLE I: Qualatitive analysis of the estimated trajectory with
respect to Vicon.

RMSE Mean Median Std Min Max

9.5cm 8.6cm 8.1cm 4.2cm 0.4cm 27cm

(a) 2d

(b) 3d

Fig. 1: Estimated(in blue) and ground truth(in red) trajectories
in x-y plane (left) and 3d space(right).
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