
Visual Inertial Odometry

Aadhya Puttur, Alex Chiluisa

I. INTRODUCTION

Visual Inertial Odometry (VIO) is a method used to
estimate the 3D position, orientation, and velocity of a
moving vehicle with respect to an initial reference. This uses
the input by only one or two cameras and one or more Inertial
Measurement Units (IMU). This method is commonly used
to navigate a robot (vehicle) without carrying a GPS or
unreliable on it e.g. indoor navigation or navigation under
a bridge [1], [2] Utilizing a stereo camera with a known
distance we can obtain depth by matching features. How-
ever, with a moving robot, this can be a problem because
of motion blur and matching features in general are very
expensive. To solve this we need another measurement tool:
IMU. This instrument measures the linear acceleration and
angular acceleration of the robot. With an IMU, we can have
accurate measurements of high speed and high acceleration
which the camera lacks. Although, it has uncertainty when
the acceleration is small because the signal-to-noise ratio
decreases as the robot slows down which is why we use the
camera. Therefore, both the IMU and cameras suffer from
short-term drift and long-term drift respectively. The fusion
of IMU and camera leads us to a multi-modal fusion problem
which can be used to calculate the accurate pose of the
camera to backtrack depth. We will be using tightly coupled
visual inertial odometry because we focus on minimizing the
error of the estimated poses to the ground truth poses Fig 1.

Fig. 1. VIO Tightly Coupled: State has position, orientation, IMU biases
and 3D world point locations

II. DATA

We will be using the Machine Hall 01 easy which
is the subset of the EuRoC dataset to test our im-
plementation. The data is represented in the form of

A. Chiluisa is with the Department of Robotics Engineering,
Worcester Polytechnic Institute, Worcester, MA 01609, USA (e-mail:
ajchiluisa@wpi.edu)

A. Puttur is with the Department of Computer Science, Worcester Poly-
technic Institute, Worcester, MA 01609, USA (e-mail: aputtur@wpi.edu)

[time, x, y, z, qx, qy, qz, qw] which represents the camera
pose obtained through a VI sensor. The data includes 2000
Hz IMU messages. The data is collected from perspective
of a quadcopter. We utilize the ground truth trajectory of
the quadcopter, which is through a sub-mm accurate Vicon
Motion capture system, in order to aligned the estimate with
the ground truth. Fig 2.

Fig. 2. Trajectory Evaluation for Visual-Inertial Odometry

III. METHOD

For this project, we are implementing Stereo Multi-State
Constraint Kalman Filter (S-MSCKF), since we are using a
stereo camera. We were given a starter code and we had to
implement the following functions by using [1], [3]:

1) Initialize gravity and IMU bias
2) Batch Imu Processing
3) Process Model
4) Predict new State
5) State Augmentation
6) Add Feature Observations
7) Measurement Update
8) Predict New State

IV. INITIALIZATION

We first initialize the IMU bias and initial orientation from
the first few IMU readings that we receive from the buffer.
Then we initialize the gyro bias given the current angular and
linear velocity. Gyroscopes are subject to bias instabilities in
which the initial zero reading of the gyroscope will cause
drift over time due to noise within the device. We estimate
the gravity direction from IMU when the robot is stationary.
Here we calculate the error of the IMU state. In order to
perform this we must remove the bias from the measured



gyro and acceleration. Next we compute discrete transition
and noise covariance matrix.

We define the IMU state Fig 3.

Fig. 3. IMU State definition, first variable represents the rotation from the
inertial frame to the body frame

Now you know the gravity direction. We can estimate
the orientation by accumulating angular velocity from a
gyrometer. We also calculate acceleration in the frames in the
buffer to use that value to find the gravity.Then we initialize
the initial orientation, so that the estimation is consistent with
the inertial frame. We do this because we want to estimate
the gravity direction from the IMU in those few frames in
the buffer to get the orientation. To feed in messages we first
need to process the IMU message given the time bound. We
execute the process model, update the state information, and
then repeat these steps until the time bound is reached.

V. PROCESS MODEL

The MSCFK is an efficient method for light-weight sensor
fusion. It is a two-step process where we do inertial prop-
agation and measurement update Fig 5. With this method
we are feature tracking. We create sliding window filter. The
sliding window filter basically maintains a fixed window of
features and camera poses. The EKF is using one camera
and multiple feature points. MSCKF uses one feature and
constrains many states. MSCKF has a fixed window and uses
feature matching.

For the IMU we take pre-integration step where we only
update the parts that depend on the IMU. Then you save the
pre-integration in the buffer.

Fig. 4. continuos dynamics of estimated IMU

We have the IMU measurements for angular velocity and
acceleration with their biases removed Fig 4.

For the IMU Measurement Model we have ωm =
ω + bω + nω and the accelerometer is am = a +
RGg(rotatedgravity) + ba + na. The motion model or the
state evolution model is the physics of the system with the
quartonian evolution, point position, velocity, acceleration,
and bias. We use the discrete state evolutional model to make
it useful in the world. For the IMU we take pre-integration
step where we only update the parts that depend on the IMU.
Then you save the pre-integration in the buffer.

We then get the observational model of the camera by
using distortion. The process model and measurement model
don’t have to run together since your process updates will
be a lot more frequent than your measurement updates.

The MSCKF allows for updating features without inserting
their estimates into the state vector. It does this by constrain-
ing multiple states with a single point. Although, it does not
save point positions.

We estimate the new state of the IMU. We start by
normalizing the measurement of the gyroscope and finding
the omega matrix

Ω(ŵ) =

(
−[ŵx] w
−wT 0

)
(1)

Then we apply a 4th-order Runge-Kutta numerical inte-
gration on eq. 1 on the paper [1] to propagate the estimated
IMU state

The linearized continuous dynamics for the error IMU
state follows xI = FxI +GnI We then also propogate the
state covariance matrix and then update the state corresponds
to null space.

Instead of propagating the entire state, we just need
to propagate the error because is reduces computational
complexity. xt = x⊕δx The true state, xt is the state we are
estimating, nominal state (x) has no noise or perturbation.
then we have the error state δx We are only propagating the
error state which is the δ.

The state estimate is used to compute feature position esti-
mate using triangulation. Feature position error is correlated
with the error and we don’t want to use that in the state. We
want to decorrelate by performing projection of residual on
left nullspace of feature Jacobian. Then we perform the EFK
update.

The state augmentation is where we compute the state
covariance matrix in equation (3) in the ”MSCKF” paper.
We first get the imu state, rotation from imu to cam0, and
translation from cam0 to imu. We are only estimating the left
camera pose because the extrinsic between the two cameras
is already known. Next, we add a new camera state to the
state server. When new images are received, the state should
be augmented with the new camera state.

Marginalization is the removal of old or unwanted fea-
tures. It is when the movement is greater than some amount
in order to drop old frames or when the feature is not tracked
anymore. As well as if the max number of camera poses are
reached. We drop out old frames where in the buffer we only
have a certain number of frames.

VI. RESULTS

Using the viewer provided in the starter code, we simulate
the trajectory using the ”Machine Hall 01 easy” dataset. We
used the camera and the IMU measurement while the robot
track the trajectory and provides the estimated position. You
can find a video with the expected results as ”Output.mp4”.
Originally the video takes around an hour to complete the
full trajectory, however, the attached to this report is sped up



Fig. 5. MSCKF Estimation

Fig. 6. Final Trajectory

20 times. Fig. 6 shows the final state of the vehicle and the
final trajectory.

Moreover, we were requested to calculate the RMSE
ATE using any toolbox kit, we selected to use the
”rpg trajectory evaluation” [4]. First, we collected the es-
timated poses data in a .txt file within the msckf.py file
called ”stamped traj estimate.txt”. Using this late file and
the ”stamped groundtruth.tx” with a SE(3) alignment we
determine the trajectory as Fig. 7 shown.

The absolute error values that we obtained are shown in
Fig. 8. Regarding translation, the RMSE that we calculated
is 8.04 [cm].

REFERENCES

[1] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for
fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 965–972, 2018.

[2] https://docs.px4.io/main/en/computer vision/visual inertial odometry.
html.

[3] https://github.com/uoip/stereo msckf.
[4] https://github.com/uzh-rpg/rpg trajectory evaluation.

−2 0 2 4

x [m]

−2

0

2

4

6

8

y
[m

]

Estimate

Groundtruth

Fig. 7. Final Trajectory

Fig. 8. Absolute Errors


