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I. INTRODUCTION

This project aims to implement Vision-aided Odometry
using Multi-state Constraint Kalman Filter (MSCKF). The
need to implement MSCKF in the application of Visual
Intertial Odometry is because of the challenges faced by the
autonomous flight vehicle to use high-quality sensors and
efficient processors. With this approach, we can compensate
for costly and heavy sensors and processors. In this project, we
implement a filter-based approach with help of the fusion of
two sensors: A stereo camera and an IMU. In this implemen-
tation, we use MSCKF to determine the state and localization
of the robot is done by sensor fusion of IMU and a stereo
camera.

II. INITIALIZE GRAVITY AND BIAS

The 6-DOF IMU sensor used goes through a bias and has
to be fixed in every reading. The 6-DOF defines the 3 degrees
for rotation (gyroscope) and 3 degrees for acceleration
(accelerometer). This can also be called as calibration of the
IMU sensor, where we calculate the bias in both rotation
and acceleration and then subtract this bias from every other
reading of the IMU.

This is done by keeping the rotor stationary for around
100-200 readings and then taking the mean of these readings.
Ideally, the gyroscope reading should be [0, 0, 0] but due to
the noise and bias, there is a small fluctuating value present
in the gyroscope reading.
To calibrate this, as mentioned above we take a mean of a
few readings while keeping the rotor stationary, and then
subtract them from the next IMU readings.

Ideally, the accelerometer reading should be [0, 0,−g]
in the world frame but due to the noise and bias in the
cheap IMU sensor, we observe some fluctuations in these
readings as well. Since the accelerometer measures the linear
acceleration in 3 axes, so gravity is mentioned in the 3rd axis.
The bias in the accelerometer is also removed using the same
process used in the gyroscope. These activities are performed
before the start of the flight.

III. BATCH IMU PROCESSING

IMU batch processing is done to read the IMU message
till the next set of images is available from the stereo camera.

Fig. 1. State Vector

Fig. 2. Error State Vector

Before that, it is necessary to define what the state vector
looks like to estimate the next states. The state vector consists
of the states in the camera as well as IMU. The state vector
looks like the following.

Figure 1 shows the state vector, where q is the quaternion that
describes the rotation from the global to the IMU frame. bg
represents the bias in gyro and ba is the bias in accelerometer.
pi and vi are the positions and velocities of the body frame
in the inertial(world) frame. qIc and pIc are the transformations
between the IMU and camera frames.
For N camera poses, the state vector adds a new state in the
buffer with the first element being the states with the IMU
sensor.

The aim of the batch imu processing function is to
predict the next state and update the state information using
the process model for a given time step given the IMU
messages. The state information is updated after processing
the IMU data and terminates after time-bound.

IV. PROCESS MODEL

The process model predicts the IMU state using the motion
model where the motion model is derived from the error states
which are given below in figure 2. The error in quaternion is
a quaternion operation which is shown below.

δq = q
⊗

q−1

and the other errors are additive errors where they just add to
the previous quantity. These error states are used to determine
the process model of the robot. The angular velocity and linear
acceleration are derived which is gven in figure 3 where the



Fig. 3. IMU dynamics

Fig. 4. Covariance Matrix

ω̂ and â are given as follows.

ω̂ = ωm − bg

â = m− bg

where the Ω is the quaternion derivative and is given by the
following.

Ω(ω) =

[
ω̂ ω
ωT 0

]
here, ω̂ is a skew-symmetric matrix of the ω̂ vector and the
linearized continuous error dynamics of IMU error state are
defined as follows,

˙̃XI = FX̃I +GnI

The nI denotes the Gaussian noise of the accelerometer and
gyro reading. To propagate the IMU measurement in discrete
time, we apply the Runge Kutta method of order 4.

F matrix in the above-given equation (discrete time equation)
is used to derive the discrete time state transition matrix
and the G matrix is used to obtain the discrete-time noise
covariance matrix. ϕK is approximated by Taylor expansion
till the 3rd order of F, while Qk is a discrete-time state
covariance matrix obtained by continuous time methods of
state covariance Q and G matrix. The observability constraint
is applied by modifying the transition matrix. Here the state
transition matrix is corrected by making it symmetric.

V. NEXT STEP PREDICTION

Here, we predict the Next Step of the robot using the
Runge Kutta Method. This method is used to mathematically
approximate the next timestep using a linear approximation
of non-linear functions. Here we approximate the next IMU
State given the conditions of the current IMU state. The RK
4 method can be summarized by the following flowchart.
Basically, the calculated k1, k2, k3 and k4 can be used to
obtain the next state of the IMU.

Fig. 5. Runge Kutta of Order 4

VI. STATE AUGMENTATION

When new images are received, the state should be aug-
mented with the new camera state. The pose of the new camera
state can be computed from the latest IMU state as follows
The augmented covariance matrix is given by the following
equation given in VI and the J matrix is given by the equation
given in VI.

VII. ADDING FEATURE OBSERVATION

Here, we check if the feature observed is in the map server
dictionary or not. If it is not there, we add a new key to the
map server dictionary.

VIII. MEASUREMENT MODEL AND UPDATE

A single feature fj is observed by the stereo cameras with
the pose. The stereo cameras have different poses, for left and
right cameras respectively, at the same time instance. Although
the state vector only contains the pose of the left camera,
the pose of the right camera can be easily obtained using the
extrinsic parameters from the calibration.

The dimension is then reduced to R3 assuming the stereo
images are properly rectified. But by representing the same
in R4 we can skip the rectification and the camera poses are
given by The position of the feature in the world frame is
calculated using Gaussian-Newton least square minimization.
The residual of measurement can be approximated by the
following equation



Fig. 6. Stereo camera measurement

Fig. 7. Camera poses of left and right

The pose of the feature in the global frame is calculated
using the camera pose and thus the uncertainty of pj in a
global frame is correlated to camera states. To remove this
correlation, the residual in equation 4 is projected onto the
null space V of HJ

• Find Cam0 pose.
• Find Cam1 pose.
• Find 3d feature position in the world frame and its

observation with the stereo cameras
• Convert the feature position from the world frame to the

cam0 and cam1 frame.
• Modifies the measurement Jacobian to ensure observabil-

ity constrain.
• Compute the residual.

IX. UPDATING

The update process is done in the following way,
• Check if H and r are empty
• Decompose the final Jacobian matrix to reduce computa-

tional complexity
• Compute the Kalman gain.
• Compute the error of the state.
• Update the IMU state.
• Update the camera states.
• Update state covariance.
• Fix the covariance to be symmetric

X. RESULTS

The results of our implementation can be seen as follows.
We have also plotted errors with respect to ground truth of the
EuROC dataset.

Fig. 8. Removing the correlation /Residual equation

Fig. 9. The resulting trajectory as seen via pangolin.
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Fig. 10. Relative Translation Error
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Fig. 11. Ground truth vs Estimated Trajectory.
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Fig. 12. Rotatation Translation Error
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