
RBE 549: Project 4 - Visual Inertial Odometry
Chinmay Kate

M.S. Robotics Engineering
Worcester Polytechnic Institute (WPI)

Worcester, MA 01609
Email: cskate@wpi.edu

Mandeep Singh
M.S. Robotics Engineering

Worcester Polytechnic Institute (WPI)
Worcester, MA 01609

Email: msingh2@wpi.edu

I. OVERVIEW

In this project we are going to Simultaneously Localize and
Map (SLAM) the positions of an agent using data from a stereo
camera and an Inertial Measurement unit (IMU sensor). The
problem of SLAM can be done by using only a stereo camera -
classical Structure from Motion pipeline where we reconstruct
3D points as well as find the camera pose (Localize the camera
in the 3D world). But this process although accurate has high
computational cost and fails in case of high speed situations
(motion blur). To account for this, we also use a much cheaper
sensor IMU along with the camera which compliments the
limitations of using only camera system for SLAM. It can
work at higher output rate and even at higher speeds and
accelerations.
But still this method can be computationally expensive as
we have to track too many features along the way which
leads our state vector and covariance matrix to increase as
the time progresses. This project takes into consideration this
problem and provide an optimized solution to further reduce
the computational complexity without compromising with the
efficiency.
Here in place of tracking all features that the camera encounter
on its way, we track the same feature with different camera
poses and then do a math trick to get the relative poses of
cameras with respect to each other and thus localize itself.

The implemented functions in the whole Visual inertial
Odometry pipeline are discussed in detail in below sections.

II. IMPLEMENTED FUNCTIONS

A. Initialize gravity and bias

This function is basically implemented to initialize the IMU
bias and initial orientation of the IMU with respect to the
world frame based on the first few readings of the IMU. For
calculating gyro bias we are just taking the average of all the
angular velocity values in the imu buffer and update that value
in the state server imu state. For getting the orientation of the
IMU with respect to the world frame we have to use gravity to
our rescue. We know that gravity is always in the downward
direction in the world frame, so the normalized output of the
imu when kept static and being kept in any orientation should
be equal to the acceleration due to gravity i.e. 9.81(approx.)
So, we have a vector of gravity in inertial frame (average
of imu buffer values) and we have our gravity vector, we can

find the rotation between these two vectors in quaternion form
easily, which will give us the initial orientation of the IMU in
world frame.

B. Batch IMU processing

This function processes the messages in the imu msg buffer,
executes the process model and updates the state (mentioned
in Section C). We execute the process model on the imu states
stored in imu msg buffer ubtil the imu time reaches the time
bound.

C. Process model

In this function, we perform the steps of implementing the
motion model. We write the dynamics of the IMU error state
and then find the initial estimates of the state after solving
the dynamics equation and thus propagate the state. This state
estimate is further refined in measurement update when we
have the camera observations.

First of all, the continuous dynamics of the estimated IMU
state as written below:

To deal with the discrete measuremrnts from the IMU we
have to apply 4th order Runge-Kutta numerical integration
to propagate the estimated IMU state which is explained in
detailed in the next section ’Predict new state’. Once, we
have the estimated IMU state, we also have to propagate the
uncertainity of the state i.e. the transition matrix and the noise
covariance matrix.

We follow the following steps in order to propagate the
noise covariance matrix:

• Linearize the error state using the taylor’s series expan-
sion till 3rd term.

• Modify the transition matrix to get the Phi matrix.



• Now, using the Phi matrix and G matrix, the continuous
time noise covariance (Q) of the system is given by the
following equation:

• Once we have the Q, Phi we can calculate the state
propagated covariance denoted by P in the below written
equation.

Where the first matrix (top left in above matrix) is given
by follwing:

• After the IMU state and covariance propagation we just
update the state correspondences to the null space.

D. Predict new state

This function is part of the above process model where we
propagate the estimated IMU state using 4th order Runge-
Kutta numerical integration. So, we already have the kinematic
equations for the derivatives of the orientation, velocity and
position as given in above Fig. . We only need to integrate
those equations if we want to get the estimates of the IMU
state. But the above equations are for continuous state and
our system is discrete. So, we use Runge-Kutta’s integration
method for to estimate velocity and position.

1) Orientation: We know that q is a quaternion and to
integrate a quaternion is not that direct. We use the following
equation to calculate the integration of the quaternion q.

2) Velocity and Position: To get the IMU state velocity and
position update we use Runge-Kutta 4th order equations. The
general way to obtain a Runge-Kutta integartion of 4th order
is shown below:

If we plug in the functions of velocity and position in place
of y, we can calculate the IMU state update for position and
velocity.

E. State Augmentation

In this function we update the camera pose and the state
covariance matrix as when the camera records a new image.

1) Update Camera Pose: the camera pose can easily be
obtained as we know the rotation and translation between
the camera and IMU. So, we get the camera pose using the
following equations:

We append these camera poses (orientation quaternion and
position vector) to our state vector.

2) Augment State covariance matrix: Accordingly we also
have to augment the state covariance matrix when we get new
image msg. The state covariance matrix which is denoted as
P is augmented as shown below:

Where J is the Jacobian matrix given by th =e equation:

F. Add feature observations

In this function we check for the features in the images
from the camera. If we get a new feature, we add it to the
map server and if the feature already exists in the server we
just update its new observations. This feature tracking is done
by assigning a unique feature id number to each and every
feature.

G. Measurement update

Measurement model is used to update the state estimates.
For constructing measurement model we define residual r ,
that linearly depends on state error X̃ .

Here H is Jacobian matrix which maps from state into
measurement domain and noise term is zero mean which is



uncorrelated to state error for EFK framework to be applied.
In measurement model of MSCKF we view static feature with
multiple camera poses. Here we concatenate camera poses per
feature and present this as our constraint. This is achieved
without including feature pose in the filter state vector.

Writing measurement model for single feature point fj with
the equation given below:

Here n is the noise vector having covariance matrix. Feature
position expressed in the camera frame given by equation:

This is the 3D position of feature point in Global frame.
We obtain P̂ estimate using least square minimization. To do
this we obtain z and their filter estimates of camera poses at
corresponding time instants. Once we compute estimates we
can put this in our original residual r equation.

We modify a bit by linearizing the above equation and
stacking the equations of all residuals into one equation given
by:

Here, H
(j)
X and H

(j)
f are Jacobians of measurement w.r.t

to state and feature position jacobian respectively. As X state
is used to estimate feature position, the error p̃ is correlated
with errors X̃. Therefore we cannot use our above residual r
equation directly in our measurement model and therefore we
modify it by projecting r(j) on the left null space of the matrix
H

(j)
f .

This residual equation is independent of the errors in the
feature coordinates. From this EKF update can be performed

which is optimal except for the inaccuracy caused by lineariza-
tion. Finally we compute the Kalman gain matrix and update
the covariance matrix with the equation expressed below. In
order to reduce the computational complexity of the EKF
update, The QR decomposition of matrix H

(j)
X is performed.

Thus the vectors Q1 and Q2 become orthonormals and we can
exclude them from our final measurement equation.

H. Results and Analysis

From the MSCKF implementation we can conclude follow-
ing things:

• In recursive state estimation with camera observations,
measurement model is non-linear in nature and sensitiv-
ity of camera is affected by noise causing inconsistent
solutions with false local minima. This problem of lin-
earization inaccuracies can be solved using feature depth
parameterization used in measurement model.

• Most feature can be tracked over a small frames. That
result in feature tracking algorithm failure. This is mostly
due to noise, limited FOV, occlusions.

III. REFERENCES

• https://www-users.cse.umn.edu/∼stergios/papers/
ICRA07-MSCKF.pdf

• https://arxiv.org/pdf/1712.00036.pdf
• https://github.com/uoip/stereo msckf/tree/

f8412830b09994ca7c681eb36a0039154a387901
• https://docs.openvins.com/pages.html
• https://arxiv.org/pdf/1704.06053.pdf

https://www-users.cse.umn.edu/~stergios/papers/ICRA07-MSCKF.pdf
https://www-users.cse.umn.edu/~stergios/papers/ICRA07-MSCKF.pdf
https://arxiv.org/pdf/1712.00036.pdf
https://github.com/uoip/stereo_msckf/tree/f8412830b09994ca7c681eb36a0039154a387901
https://github.com/uoip/stereo_msckf/tree/f8412830b09994ca7c681eb36a0039154a387901
https://docs.openvins.com/pages.html
https://arxiv.org/pdf/1704.06053.pdf


Fig. 1: Trajectories: Estimated vs Ground Truth

Fig. 2: Absolute Error statistics

Fig. 3: Translation Error statistics


	Overview
	Implemented functions
	Initialize gravity and bias
	Batch IMU processing
	Process model
	Predict new state
	Orientation
	Velocity and Position

	State Augmentation
	 Update Camera Pose
	Augment State covariance matrix

	Add feature observations
	Measurement update
	Results and Analysis

	References

