
Visual Inertial Odommetry
RBE549 Project 4

Shiva Kumar Tekumatla
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, U.S.A.

stekumatla@wpi.edu

Ajith Kumar Jayamoorthy
Robotics Engineering Department

Worcester Polytechnic Institute
Worcester, MA, U.S.A.
ajayamoorthy@wpi.edu

Abstract—This document consist of project implementation of
a filter-based stereo visual inertial odometry that uses the Multi-
State Constraint Kalman Filter (MSCKF). The mathematical
concepts of a stereo-MSCKF are implemented within a frame-
work of given starter-code. The results and observations for each
step has been recorded in this document.

I. INTRODUCTION

The main objective of the project is to obtain scale from
a image and thus evaluated depth. As we have understood
before it is not possible to obtain depth from a single camera
without any prior information about the environment. A sim-
pler alternative solution would be to utilize a stereo camera
with a known pose, where we can directly estimate depth by
matching features. However, there are first a few drawbacks
to just matching a image. First of all, matching is expensive
and hard, and secondly, this does not work when there is
motion blur which is common on robots. We can solve this
by using an Inertial Measurement Unit (IMU). A common 6-
DoF (Degree of Freedom) IMU measures linear acceleration
and angular acceleration. The best part about an IMU is that
it works well with fast movement and jerks where camera
fails but drifts over time in which camera excels. Hence, this
complementary nature lends to a beautiful multi-modal fusion
problem which can be used to estimate accurate pose of the
camera to backtrack depth. [1]

II. DATA

The data we would be using is Machine Hall 01 easy
(MH 01 easy), a subset of the EuRoC dataset to test our
implementation. The data has been collected using a 6-DoF
sensor carried by a quad-rotor flying in a trajectory. The
ground truth for the system has been obtained from a sub-
mm accurate Vicon Motion capture system.

III. IMPLEMENTATION

A started code has been provided for the implementation
of the Multi-State Constraint Kalman Filter (MSCKF). We
updated the following functions in a msckf.py python file to
complete the implementation of the model.

A. Initialize gravity and bias
In this function the bias and initial orientation are initialized

based on the starting IMU reading. The angular and linear ve-
locity are obtained by averaging the imu msg buffer first few
readings. They gyro bias is initialized with the average angular
velocity and the gravity is obtained by linear velocity. Then
the normalized gravity vector is passed as IMU state. Then
from these two vectors we initialize the initial orientation, so
that the estimation is consistent with the inertial frame. Then
the quaternions are passed as orientation state of the IMU. The
final vector is represented as follows [2]:

XI = (IGqT bT
g

GvTI bT
a

GpT
I

I
CqT IpT

c)
T

where the quaternions I
Gq represents the rotation from the

inertial frame to the body frame. The body frame in our case
is considered to be the IMU frame. The vectors GvI and GpI

represent the velocity and position of the body frame in Inertial
frame. bg and ba are the biases of measure angular and linear
velocity from the IMU.

B. batch imu processing
In this function we process the imu messages in the

imu msg buffer given the time bound. We first run the process
model for every imu input in each time bound. This is repeated
until the time bound is reached. After that the current imu id is
update to the next state imu id. All the unused imu messages
are removed from the imu msg buffer.

C. process model
The purpose of the function is to calculated the dynamics

(pose) of the camera module state computed from the latest
IMU state update. First the IMU state update are obtained
arguments to the function in the form of time, m gyro (current
angular velocity) and m acc (current linear acceleration). Next
the error for each IMU state is calculated as and is represented
as follows [2]:

X̃I = (IGθ̃
T b̃

T

g
GṽTI b̃

T

a
Gp̃T

I
I
C θ̃

T I p̃T
c)

T

We evaluate the linearized continuous dynamics for the error
IMU state as [2]:

˙̃XI = FX̃I +GnI

We calculate the discrete transition matrices F and Q as
follows [3]:

F =

−⌊ω̂×⌋ −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(IGqT)⌊â×⌋ 03×3 03×3 −C(IGqT) 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

G =

−I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(IGqT) 03×3

03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

Next we approximate the matrix exponential to the 3rd order

as follows:

ϕ = I21×21 + F (τ).dτ +
1

2
∗ (F (τ).dτ)2 +

1.0

6.0
∗ (F (τ).dτ)3

Next we propagate the state and predict new state using the
4th order Runge-Kutta method by using the predict new state
function.

D. predict new state
In this function the state is propogated using 4th order

Runge-Kutta method [2]. The input for this function is the
time step dτ , gyro and acceleration for that given state. First
we start by computing the normalized value of the error state
of angular velocity (gyro). Then we work on getting the Ω
matrix as follows:

Ω(ω̂) =

[
−[ω̂×] ω
−ωT 0

]
We then obtain the current state of orientation, velocity and

position from the imu state server. Using the current values
and the Ω values, the angular velocity and the angular accel-
eration are calculated and the values are further approximated
using the Runge-Kutta method.

k1 = f(tn, yn)

k2 = f(tn +
dτ

2
, yn + k1 ∗ dτ

2
)

k3 = f(tn +
dτ

2
, yn + k2 ∗ dτ

2
)

k4 = f(tn + dτ, yn + k3 ∗ dτ)

After calculating the approximate orientation, it is converted
to quaternions and velocity and the position of the current IMU
state are updated based on the new approximation. These new
values are then set as the current state values to evaluate the
next state.

E. state augmentation
In this function we are going to compute the state covariance

matrix to propagate the uncertainty of the state. We first obtain
the IMU and camera state values corresponding to the rotation
from the IMU to camera and the translation vector from the
camera to the IMU. Next we add a new camera state to the
state server by using the initial imu and camera state.

Next we update the state augmentation Jacobian JI given as
follows:

JI =

[
C(IGq̂) 03×9 03×3 I3 03×3

−C(IGq̂)T ⌊I p̂c×⌋ 03×9 I3 03×3 I3

]
Then we resize the state covariance matrix and then prop-

agate the covariance of the IMU state.The full propagation of
the uncertainty is represented as:

Pk+1|k =

[
PIIk+1|k ϕkPICk|k

PT
ICk|k

ϕT
k PCCk|k

]
Finally The Augmented covariance matrix Pk|k is given as

follows:

Pk|k =

[
J21+6N

J

]
Pk|k

[
J21+6N

J

]T
Then we update the state covariance in the server.

F. add feature observations
We first obtain the feature msg as the input to the for this

function. The current imu state id is obtained and the number
of features is evaluated. Then we append each feature one by
one in the feature msg to the map server, if it is not already
present in the map server.We also have a count of the number
of features tracked. for every given state, the map server is
updated and all the features are tracked. The tracking rate is
calculated as the ratio of number of tracked features to the
number of current features available.

G. measurement update
A measurement model has been employed for updating the

state estimates. A residual r is defined that depends linearly
on the state errors, , by the given relation [3]:

r = HX̃ + noise

In the above equation, H is the measurement Jacobian matrix
and the noise term is a zero-mean, white, uncorrelated state
error. Estimated Kalman filter framework has been imple-
mented. First we try to check if the existing H and r are zero.
After that we try to reduce the complexity of the Jacobian
matrix by using QR decomposition, to reduce the computation
requirements as follows:

Hx =
[
Q1 Q2

] [Th

0

]
where, Q1 and Q2 are unitary matrices whose columns form

bases for range and nullspace of Hx, respectively and TH is an

upper triangular matrix. Next, we compute the Kalman gain
according to the equation:

K = PTT
H(THPTT

H +Rn)
−1

where, K is the Kalman gain, P is the state covariance matrix,
TT
H is the upper triangular matrix and Rn is the covariance

matrix of noise. Following the calculation of Kalman gain,
the state error is computed as :

∆X = Krn

Using this state error, IMU state is first updated followed by
the camera states. Finally, the state covariance is updated and
the covariance matrix is modified to be symmetric.

IV. RESULTS

The input data used for this project is from Machine Hall
01 easy or (MH 01 easy) subset of the EuRoC dataset. The
figure 1 shows the trajectory output for this data and it is
similar to the expected output. The video of this output is
attached along with the code files.

Fig. 1. Trajectory output for the MH 01 easy data

−2 0 2 4

x [m]

−1

0

1

z
[m

]

Estimate

Groundtruth

Fig. 2. Trajectory output for the MH 01 easy data

0 10 20 30 40 50 60 70 80

Distance [m]

−100

0

100

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

Fig. 3. Trajectory output for the MH 01 easy data

0 10 20 30 40 50 60 70 80

Distance [m]

−2

−1

0

1

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

Fig. 4. Trajectory output for the MH 01 easy data

The following are the error statistics:
1) Rotation:

a) max: 2.5960746020383834
b) mean: 1.4915827054175759
c) median: 1.4271887897129485
d) min: 0.9230520272754749
e) num samples: 3639
f) rmse: 1.5202436938405717
g) std: 0.29380592499337316

2) scale:
a) max: 3.278213410981534
b) mean: 1.1981694701227577
c) median: 1.2653058044715615
d) min: 0.000625509235674393
e) num samples: 3639
f) rmse: 1.4313479030454652
g) std: 0.7830368704080289

3) translation:
a) max: 0.18863288477670725
b) mean: 0.07658838915096859
c) median: 0.07894468624273385
d) min: 0.0157409411189315
e) num samples: 3639
f) rmse: 0.08137476450369072
g) std: 0.027496744267111357

REFERENCES

[1] https://rbe549.github.io/fall2022/proj/p4/
[2] https://arxiv.org/pdf/1712.00036.pdf
[3] https://www-users.cse.umn.edu/ stergios/papers/ICRA07-MSCKF.pdf
[4] https://github.com/KumarRobotics/msckf vio

