
RBE/CS549 COMPUTER VISION, P4, NOV 13, 2022 1

RBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer VisionRBE/CS549 Computer Vision
Project 4 - VIO

Anagha Dangle - Mihir Kulkarni
ardangle@wpi.edu - mmkulkarni@wpi.edu

Abstract—The task of this project is to perform visual-inertial
odometry, which is a fusion of camera and imu data to bring
about robust odometry for a robot. The complementary charac-
teristics of a camera and an imu are used for the same. We use
the Multi-State Constraint Kalman Filter (S-MSCKF) approach
which is a state-of-the-art method to perform VIO. It used a
stereo camera and an IMU. It is the favored method for MAV
platforms since it can function well in GPS-denied conditions
and requires a much smaller and lighter sensor package than
lidar-based techniques.

Index Terms—Visual-Inertial Odometry, MSCKF, IMU, Stereo

I. FUNCTIONS IMPLEMENTED

The following functions are implemented -
initializegravityandbias (estimates gravity and bias using
initial few measurements of IMU), batchimuprocessing
(Processes the messages in the imumsgbuffer, executes
the process model and updates the state), processmodel
(Dynamics of the IMU error state), predictnewstate
(Handles the transition and covariance matrices),
stateaugmentation (Adds the new camera to state and
updates), addfeatureobservations (Adds the image features
to the state), measurementupdate (Updates the state using
the measurement model) and predictnewstate (Propogates
the state using 4th order Runge-Kutta).

A. Initialize Gravity and Bias

In Visual Inertial Odometry, the IMU state is defined as.

XIMU =
[
T
Gq̄

T bg
T Gvf

T ba
T GT

pI

]T
(1)

The vectors bg and ba are the biases of the measured angular
velocity and linear acceleration from the IMU. The white
Gaussian noise vectors nwg and nwa, are used to drive the
random walk processes which model the IMU biases. In the
IMU frame, gravity is also defined. In order for the estimation
to be consistent with the inertial frame, initialize the initial
orientation as well. It also makes use of the rotation quaternion
from v0 to v1.

B. Batch IMU Processing

The time evolution of the IMU state is described by:

IG ˙̄q(t) = 1
2Ω

(
ω(t)

)I
G
q̄(t), b̂g(t) = nwg(t) (2)

Gv̂I(t) =
G
a (t),

b
a(t) = nwa(t), G∗

pI(t) = GVI(t) (3)

In this function, we continuously evolve the process model
with increments in time. The process model function is called
continuously. this is done until a certain timestamp Is reached.
After a finite time, the state is updated and the msg buffer is
cleared. The process model is explained below.

C. Process Model
The linearized continuous-time model for the IMU error

state is:

X̃IMU = FX̃IMU +GnIMU (4)

where
nIMU =

[
nT
g nT

wag nT
a nT

wa

]T
(5)

is the system noise. The covariance matrix of nIMU ,
QIMU , depends on the IMU noise characteristics and is com-
puted off-line during sensor calibration. Finally, the matrices
F and G that appear in Eq. (10) are given by:

Fig. 1

Fig. 2

If dt is within 0.01s, our 3rd-order approximation of the
matrix exponential can be considered precise enough. Use
Runge-Kutta of the fourth order to propagate the state. We
use a 4th-order Runge-Kutta numerical integration of the
following equation to propagate the estimated IMU state in
order to handle discontinuous time measurements from the
IMU. The discrete-time state transition matrix of the Equation
and the discrete-time noise covariance matrix must first be
constructed in order to convey the state’s uncertainty. Then we
propagate the state covariance matrix and make the covariance
symmetric. Finally, we update the state corresponding to the
null space.



RBE/CS549 COMPUTER VISION, P4, NOV 13, 2022 2

D. Predict new state
We use the following equations to propagate to new IMU

state: k1 = f(tn, yn)
k2 = f(tn+dt/2, yn+k1*dt/2)
k3 = f(tn+dt/2, yn+k2*dt/2)
k4 = f(tn+dt, yn+k3*dt)
yn+1 = yn + dt/6*(k1+2*k2+2*k3+k4)

E. State Augmentation
When a new image is captured, the camera pose estimate

is calculated from the IMU pose estimate as follows:

Gp̂C = Gp̂I +CT\
q p̂C (6)

The quaternion expressing the rotation between the IMU
and camera frames is q, and the position of the camera frame’s
origin with respect to I is IpC, both of which are known. This
new camera pose estimate is appended to the state vector. The
state covariance matrix is then updated. The Jacobian is given
as follows:

J =

[
C (CI q̄) 03×9 03×6 03×6N[
CT

q̄ IpC×
]

03×9 13 03×6N (7)

F. Add feature observations
A feature message contains the image’s timestamp, cam0

and cam1 frames, and cam0 and cam1 messages. The map
server is used to determine whether the detected feature is a
new or existing feature before adding it. Following the addition
of the feature to the map server, the tracking rate is updated.

G. Measurement update
Hj

Xi and Hj
f i are the Jacobians of the measurement z (j)

I with respect to the state and feature position, respectively,
in the preceding expression, and Gpefj is the error in the
position estimate of fj. Jacobians are provided by: The final
Jacobian matrix is then decomposed using the QR decomposi-
tion method to reduce computational complexity. The Kalman
gain for state covariance is computed first, followed by the
state error. Finally, the IMU state, camera state, and state
covariance are all updated.

H
(j)
Xi

=
[
02×15 02×6 · · · P

(j)
i |Cc

i X̂fj × | − J
(j)
i C(Cc

i q̂) · · ·
]

(8)
H

(j)
ji

= J
(j)
i C(Λ

(C)
G q̂) (9)

II. ERROR CALCULATION

Th RMSE ATE Error to be estimated is done using rpg
Repository. This repository implements common used trajec-
tory evaluation methods for visual-inertial odometry. The plots
are illustrated in the figures. SE(3) alignment is done.

The procedure to run the toolbox involved convering the
groundtruth text files to their specified file formats. Also
the estimated IMU states are added in CSV file which is
later convert to .txt. The .yaml file is edited to specify SE3
alignment. The README.md has specified all the steps to be
followed .

III. RESULTS

Fig. 3: Final Output

Fig. 4: Initial Camera Pose

Fig. 5: Relative Yaw error

Fig. 6: Scale Error

Fig. 7: Side trajectory plot



RBE/CS549 COMPUTER VISION, P4, NOV 13, 2022 3

Fig. 8: Top trajectory plot

Fig. 9: Translation error


